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Abstract: We consider the Two-dimensional Vector Bin Packing Problem (2D-VBPP) that has an 
important application in organizing packages into containers for oversea transportation. Starting 
from the existing Integer Linear Programming model, we add some tightening constraints that enable 
to generate the better first feasible solution. In addition, we apply three matheursitic methods based 
on Variable neighborhood search: Variable Neighborhood Branching (VNB), Variable 
Neighborhood Decomposition Search for 0-1 MIP problems (VNDS-MIP), and Variable Intensity 
Neighborhood Search (VINS). To obtain high-quality solution, the parameter tuning is performed in 
all three methods. We compare matheuristics with each other and with CPLEX exact solver. The 
experimental results on the set of 50 instances have shown that matheuristics in average give 
solutions of better quality compared to exact solver. Regarding the mutual comparison between 
matheuristics, we can conclude that in average VINS outperforms other two with respect to the 
solution quality. 
Keywords: Combinatorial optimization, integer linear program, hybrid heuristics, matheuristics, 
Hamming distance, fixing variables 

1. INTRODUCTION 
Variety of metaheuristic methods are used to address different optimization problems for decades. 
These methods are designed for a particular problem or a group of similar problems, starting from a 
basic concept of a specific metaheuristic. To provide efficiency and high quality solutions, many 
elements of the method must be carefully adapted to the considered problem. On the other hand, 
matheuristics are general-purpose and model-based methods [9] that can be directly applied to 
different problems. They are created as hybrids incorporating one metaheuristic and one exact 
optimization method. The important element in matheuristics is mathematical programming 
formulation of the problem. The Mixed Integer Programming (MIP) model, which is generally used 
by exact solvers, is explored by matheuristic in the following way. Metaheuristic rules are used to 
create sub-problems of the original problem; the resulting sub-problems are then treated by exact 
solver within given time limit. With enough resources, matheuristics are able to explore the entire 
search space and provide optimal solution of the problem.   

The three matheuristic methods based on the well-known metaheuristics Variable neighborhood 
search (VNS): Variable Neighborhood Branching (VNB), Variable Neighborhood Decomposition 
Search for 0-1 MIP problems (VNDS-MIP) [7], and Variable Intensity Neighborhood Search (VINS) 
[8] are all described in details in [2]. These methods are used for maximizing the ferry’s operator 
profit in [16] within a complex ferry transport optimization problem that includes given sets of routes 
and passenger preferences. They are also applied in [10] to the real-life vehicle routing problem 
consisting of visiting and serving customers under time and capacity limits in order to minimize the 
total traveled distance. Experimental results have proven that matheurstics outperformed exact solver, 
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with VINS producing the best solutions in the majority of tested instances. Two of the considered 
matheuristics, VNB and VNDS-MIP, as well as Local Branching (LB) [3], [6] are successfully 
applied to the problem of the barge container ship routing [11] in order to maximize the shipping 
company profit. Moreover, VNDS-MIP is extended to handle general integer variables, besides 
binary. The best performance is demonstrated by VNDS-MIP. 

The aim of this work is to additionally explore the efficiency of VNS-based matheuristics when 
applied to the Two-dimensional Vector Bin Packing Problem (2D-VBPP). This problem consists of 
selecting bins for packing the set of given two-dimensional items in order to minimize the total cost. 
More about the problem can be found in the early work [5]. The 2D-VBPP is proven to be NP-hard 
and has been addressed by different heuristic methods, such as: a simple greedy heuristic, Simulated 
annealing and Column generation in [5], 34 greedy heuristics in [4], different variants of Greedy 
Randomized Adaptive Search Procedure (GRASP) in [12], variants of Variable neighborhood search 
in [13], [14], and [15]. As mentioned before, these metaheuristics are not based on MIP formulation 
and are either designed or adapted for this particular problem through the long process of software 
developing and parameter tuning. Therefore, in this paper we omit the comparison of matheuristic 
results with previously designed metaheuristics, and compare matheurists between each other and 
against exact CPLEX solver.  

The remainder of the paper is organized as follows. MIP formulation of the problem and 
matheuristic approaches are described in Section 2, experimental results are presented in Section 3 
and Section 4 states the conclusion.  

2. MATHEMATICAL FORMULATION BASED APPROACHES TO THE 2D-VBPP 
 

Matheuristic methods depend significantly on the mathematical formulation of the considered 
problem.  Moreover, they are sensitive to the order of constraints and the quality of the first feasible 
solution provided by exact solver. Therefore, among several equivalent formulations of the 2D-
VBPP, the best performing one is chosen and described in this section. We improved the standard 
mathematical formulation of the 2D-VBPP introduced in [5] by including an additional set of 
constraints in order to explore the search space more efficiently and improve the quality of the 
solutions. In addition, a brief overview of explored matheuristics is provided. 

2.1. The integer linear programing model of the 2D-VBPP 
To present the Integer Linear programing (ILP) formulation, the following notations must be 
introduced. Generaly, the symbol [𝑥] is used to denote set of integer numbers {1,2,… , 𝑥}, for any 
integer value 𝑥. In addition: 

§ 𝑛𝑝 denotes the number of items, 
§ 𝑛𝑡 denotes the number of bin types, 
§ 𝐿𝑛. denotes the number of available bins of type 𝑡 ∈ [𝑛𝑡], 
§ (𝑚2, 𝑉2) denotes the two dimensions (mass and volume) of item 𝑖 ∈ [𝑛𝑝],	 
§ (𝐿𝑚., 𝐿𝑉.)	denotes the limits in capacity (mass and volume) for bins of type 𝑡 ∈ [𝑛𝑡], 
§ 𝐶. denotes the cost of using bin of type 𝑡 ∈ [𝑛𝑡], 

 
Mathematical formulation of the problem uses two sets of variables [5]: 

§ Binary variables 𝑝28.,  defined by 𝑝28. = 1 if  an item 𝑖 ∈ [𝑛𝑝] is packed in bin 𝑗 ∈ [𝐿𝑛.] 
of type 𝑡 ∈ [𝑛𝑡], otherwise 𝑝28. = 0, 

§ Binary variables 𝑘8., defined by 𝑘8. = 1 if  a bin 𝑗 ∈ [𝐿𝑛.] of type 𝑡 ∈ [𝑛𝑡] is used, 
otherwise 𝑘8. = 0. 
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Using the above notations, the ILP formulation for the 2D-VBPP can be stated as follows: 

  (min) 𝐶 = ∑ ∑ 𝐶.𝑘8.
>?@
8AB

?.
.AB        (1) 

 ∑ ∑ 𝑝28.
>?@
8AB = 1?.

.AB ,   𝑖 ∈ [𝑛𝑝]	      (2) 

 ∑ 𝑝28.𝑚2 ≤
?D
2AB 𝑘8.𝐿𝑚., 𝑡 ∈ [𝑛𝑡], 𝑗 ∈ [𝐿𝑛.]     (3) 

 ∑ 𝑝28.𝑉2 ≤
?D
2AB 𝑘8.𝐿𝑉.,    𝑡 ∈ [𝑛𝑡], 𝑗 ∈ 	 [𝐿𝑛.]     (4) 

  𝑘8. ≤ ∑ 𝑝28.
?D
2AB ,														𝑡 ∈ [𝑛𝑡], 𝑗 ∈ [𝐿𝑛.]     (5)  

  𝑝28. ∈ {0,1},     𝑖 ∈ [𝑛𝑝], 𝑡 ∈ [𝑛𝑡], 𝑗 ∈ [𝐿𝑛.]   (6) 

  𝑘8. ∈ {0,1},																						𝑡 ∈ [𝑛𝑡], 𝑗 ∈ [𝐿𝑛.]     (7) 

 
Objective function (1) to be minimized stands for the total cost of bins that are used. Constraints 

(2) ensure that each item is packed in exactly one bin. The purpose of constraints (3) and (4) is to 
prevent the total mass and volume of packed items to exceed the limits of bins. Constraints (5) do not 
allow empty bins to be included in transport. More precisely, if there is no item packed in bin 𝑗 ∈
[𝐿𝑛.] of type 𝑡 ∈ [𝑛𝑡], then 𝑘8.	takes the value 0. We introduce these constraints to tighten the 
formulation and, as a result, the first feasible solution generated with this model has significantly 
better quality with respect to the case when original model from [5] is used. Finally, (6) and (7) define 
the type of variables used in the formulation. 
The presented mathematical formulation includes (𝑛𝑝 + 1)∑ 𝐿𝑛.?.

.AB  variables in total. Previously, it 
was assumed that the number of available bins for each type is equal to the total number of items 
(𝑛𝑝) and, therefore, the total number of variables was (𝑛𝑝 + 1)𝑛𝑝 ∙ 𝑛𝑡. Another important 
contribution of this formulation is the estimated upper bounds for the number of bins of each type. 
Namely, using simple greedy procedure, we generated the initial solution for the VNS method 
proposed in [14] and run it on each instance and on each of the 𝑡 ∈ [𝑛𝑡]	homogeneous cases 
(assuming all containers are of the same type). VNS is executed 20s for each instance with 50-500 
items and 60s for each instance with 750-1000 items. In such a way, we obtained the better values 
for the largest number 𝐿𝑛.	of bins of type 𝑡 in which all items can be packed. These values are used 
as upper bounds for the number of bins of type 𝑡,	for each 𝑡 ∈ [𝑛𝑡]. In this way, the number of 
variables and constraints are reduced. The estimated values 𝐿𝑛., 𝑡 ∈ [𝑛𝑡]	and the total number of 
variables before and after reducing for each instance can be found at: 
https://doi.org/10.5281/zenodo.8105682. 

2.2. Briefly about used matheuristics  
For the experimental evaluation we utilized three matheuristic methods based on the well-known 
VNS metaheuristic: VNB, VNDS-MIP, and VINS. These methods are described in many detail in [2] 
and we provide here only some facts important for the application to the considered 2D-VBPP. First 
of all, it is important to note that metaheuristic rules to create sub-problem are applied only to binary 
variables, however, as all variables in the selected ILP for 2D-VBPP are binary, subproblems can be 
created out of all decision variables in the case of 2D-VBPP. Therefore, we are able to explore the 
full potential of the applied matheuristics. Next, all methods are implemented to explore time-limited 
CPLEX exact solver on the subproblems. This makes suitable mutual comparison of these methods, 
as well as their comparison with similar approaches from the literature. The data about problem 
instances should be given in a form of .lp file that combines objective function and constraints of the 
model with input parameters of a particular problem instance. 

To create sub-problems, VNB explores (limits) Hamming distance between solutions. More 
precisely, the number of variables that can simultaneously change their values by CPLEX should 
belong to the specified interval defining the search sub-space, i.e., neighborhood. We improved the 
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performance of the original VNB by changing the parameters of search intensification phase realized 
by the Variable Neighborhood Descent (VND) procedure. The detailed sequential search in relatively 
small-sized neighborhoods consumes a lot of time, mostly with the small improvements or without 
any improvements. Therefore, we propose to expand the search subspace explored in VND. On the 
other hand, VNDS-MIP and VINS explicitly fix some particular subsets of variables and CPLEX 
is allowed to perform changes only on the remaining variables. 

In the next section we describe and compare the results obtained when these matheuristics are 
applied to 2D-VBPP benchmark instances generated in [14]. This data set is available at: 
https://doi.org/10.5281/zenodo.5319708. 

3. EXPERIMENTAL RESULTS  
All experimental tests are performed using Intel Xeon CPU E5-2620 v3, 2.40 GHz with 32GB RAM 
memory, under Linux operating system. CPLEX 12.6.2 solver is used for exact optimization. The set 
of benchmark instances is tested with running time limited to 𝑡.G. = 1	h for each instance and each 
method. As described in [2], in addition to the total running time (𝑡.G.)	and the limit of time for sub-
problems (𝑡H2I)	appearing as the only parameters in VNDS-MIP, VNB depends on the three more 
parameters: 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥	and 𝑘𝑠𝑡𝑒𝑝 for minimum, and maximum neighborhood sizes, and the 
neighborhoods changing step, respectively. The parameters appear in both intensification phase 
(VND) and diversification phase (Shaking procedure) [2]. The values for these parameters in VND 
are set to 1, 21, 4, respectively, while their values in Shaking depend on the number of items (𝑛𝑝) for 
each instance and are summarized in Table 1. VINS uses two arrays: instead the fixed value 𝑡H2I  there 
is an array of times for subproblems denoted by time_limits,	and an array of neighborhood sizes 
(alphas), specifying the percentage of variables that are used to create subproblems. The elements of 
these two arrays are used in pairs: for a neighborhood of size alphasi, time limit for CPLEX should 
be time_limitsi. Based on the preliminary test results on the subset of instances the values of 
parameters that led to the best (in average) quality of solutions in average are presented in Table 1. 
 
Table 1: Parameter values 

Matheuristics Parameter values 

VNB 𝑡H2I = 120𝑠 𝑘I2? = 0.3𝑛𝑝 𝑘IOP = 1.5𝑛𝑝 𝑘R.SD = 0.3𝑛𝑝 

VNDS-MIP 𝑡H2I = 300s 
VINS time_limits= {360,720,900}	s alphas= {20,40,60}	%  

 
The used set of instances consists of 50 instances, five for each of the following number of items 
𝑛𝑝 ∈ {50, 70, 100, 120, 150,200, 350, 500,750, 1000}. All instances are used for the experimental 
evaluation and the obtained results are summarized in Table 2. Each row of this table contains average 
values for each group of instances with the same number of items. Table 2 is organized as follows. 
The first column contains the number of items. The average value of the best found solution by 
CPLEX solver within 1h of execution is presented in the second column. The next column contains 
the average value of the objective function for the first feasible solution (FFS). This value is important 
to estimate the progress of matheuristics, as the FFS serves as a starting point for matheuristic 
methods. Average over 5 instances lower bound (LB) provided by CPLEX and time required to reach 
the best solution are presented in the next two columns. Table 2 continues with a group of three 
columns containing the average objective function value provided by the matheuristics within 1h of 
execution time, while the last three columns contain the average time needed by matheuristics to 
reach their best solution, the so-called time-to-best (𝑡YSR.).  The best average objective function values 
are bolded for each group of instances. The same holds for the average times. The detailed results for 
each particular instance can be found at  https://doi.org/10.5281/zenodo.8102572. 
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From the results presented in Table 2 it can be concluded that, with respect to the solution quality,  
VINS outperformed CPLEX and both VNB and VNDS-MIP in average for all tested instances, except 
for instances with 50 items. It can be seen that VINS provided better results in the majority of 
examples, however, VNB in 2 cases (up to 100 items) and VNDS-MIP in 3 cases (up to 150 items) 
found the best solutions. Additionally, for 2 instances VNB generated solutions coincide with CPLEX 
and VINS, while for 3 instances VNDS-MIP and VINS provided the same best solutions.  

 
Table 2: Experimental results 

np 
CPLEX Matheuristics best obj. Matheuristics 𝒕𝒃𝒆𝒔𝒕 

Best obj. FFS LB 𝒕𝒃𝒆𝒔𝒕 VNB VNDS-
MIP VINS VNB VNDS-

MIP VINS 

50 30169.2 74172.4 29068.55 3299.5 30315.4 30177 30177 1571.2 1672.3 1088.4 
70 44550.4 104714.2 42375.2008 3370.0 44871.8 44717.4 44082.4 2521.3 576.2 1723.0 

100 62694 147920.8 59736.72 3439.3 62991.6 63036.2 62534.4 2691.7 1048.1 2102.4 
120 73774.2 184827.2 70399.72 3442.0 74103.4 73779 73625 3001.7 1692.9 2248.1 
150 90668 220118.8 86987.93 2798.2 92576.0 90513.6 90325.4 3328.0 1694.0 1635.2 
200 122487.4 308736.6 117372.23 3306.6 136494.6 123454.2 122022.4 3547.3 1791.4 2061.0 
350 216373 528302 206366.9 3294.4 377539.2 225502 214622 3600.0 3339.4 3148.8 
500 314597 760376.8 293959.586 1359.7 618304.6 630715.2 310820 3600.0 3410.4 2727.1 
750 472911.8 1148168.2 443192.02 2895.0 1014901.6 969672.4 471792.4 3581.7 3457.9 2890.4 
1000 1513592.8 1513592.8 592570.52 848.0 1434392.4 1366633.2 640800 3665.6 3491.3 2724.8 

 
In average, VINS found the best solutions on all groups of instances with the same number of 

items, which coincident with VNDS-MIP average value only in the case of instances with 50 items. 
Additional confirmation for the quality of VINS solutions can be obtained when compared to the 
CPLEX lower bounds presented in the LB column. The deviation of average objective function values 
provided by VINS from average lower bounds is between 3.81% and 8.14%. The relative differences 
between average objective function values obtained by VNDS-MIP and VINS do not exceed 5.1% 
for instances up to 350 items. However, for instances with 500, 750 and 1000 items the average 
VNDS-MIP objective function value is double compared to VINS. The difference between VNB and 
VINS with respect to the objective function value is even larger then between VNDS-MIP and VINS 
for almost all instances, particularly for instances with 350 items and more. In average for all 
instances, VNDS-MIP and VINS need almost equal time to find their best solutions, 2217 and 2235s, 
respectively, while CPLEX and VNB need more time, 2805s and 3110.8s, respectively.  

4. CONCLUSION 
Variable neighborhood search-based matheurstics are successfuly applied to the Two-dimensional 
Vector Bin Packing Problem. We contributed toward model improvement, VNB adjustment for this 
problem, and decreasing the number of variables by generating better upper bounds on the required 
number of containers. The set of 50 available instances from literature is used and the quality of 
obtained results is compared to the results of CPLEX exact solver. Among the considered 
matheuristics, Variable Intensity Neighborhood Search (VINS) outperformed the remaining methods 
with respect to the solution quality. Regarding the time required to find the best reported solution, 
slightly better performance exhibits VNDS-MIP. For the future work, we intend to additionally 
improve the model, if possible. Then, we’ll explore the sensitivity of methods to extended set of 
parametar values through a very fine parameter tunning tests. 
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