
 

297 

EMPIRICAL ANALYIS OF THE BEE COLONY OPTMIZATION METHOD ON 3-SAT 
PROBLEM 

 
TATJANA JAKŠIĆ KRÜGER 

Mathematical Institute SASA, Belgrade, tatjana@mi.sanu.ac.rs 
TATJANA DAVIDOVIĆ 

Mathematical Institute SASA, Belgrade, tanjad@mi.sanu.ac.rs 
 

 

Abstract: The satisfiability problem, especially 3-SAT, is crucial in computational complexity theory as it provides basis 
for determining complexity of other algorithms. The problem belongs to the class of NP-complete problems, therefore, it 
is usually solved by implementing heuristic methods. In this paper we explore the Bee Colony Optimization (BCO) 
algorithm for 3-SAT problem. We examine the efficiency of the proposed implementation by performing detailed 
parameter tuning. Our experimental evaluation shows that BCO can compete with a standalone WalkSAT heuristic.  

Keywords: Combinatorial optimization, satisfiability problem, nature-inspired algorithms, swarm intelligence. 

 
1. INTRODUCTION 

The propositional satisfiability problem (SAT) has the 
property that every other problem in NP can be 
polynomially reduced to it. This means that if we can 
solve SAT problem efficiently, then we can solve all other 
problems in NP efficiently as well. Therefore, the 
satisfiability problem is the hardest problem in the NP 
class [1]. Topic of this work is a variant of SAT problem, 
the so called 3-SAT problems. This consists of deciding if 
there exists an assignment (model) for all of the Boolean 
variables, such that 3-CNF formula F is true. 3-CNF 
means that clauses consist only of 3 literals. In the last 
decade a lot of sophisticated SAT solvers emerged, many 
of them developed as a result of SAT competition 
(www.satcompetition.org). The idea of a meta-heuristic 
implementation to 3-SAT problems emerged naturally, as 
the majority of solvers are heuristic methods. Moreover, 
the goal was to explore the advantage of working with 
population of solutions.  
 
Bee colony optimization (BCO) is a nature-inspired 
population-based meta-heuristic method that has proved 
to be very efficient, being applied in wide portfolio of 
optimization problems. It was proposed by Lučić and 
Teodorović at the beginning of the 21st century [2]. The 
behaviour of bees while searching for food is suitable for 
modelling since the practice of collecting and processing 
nectar is highly organized.  The first time BCO was used 
on SAT problems was in [3]. The problem originally 
belongs to probabilistic logic and was handled with 
sophisticated implementation, combining two heuristics.  
 
Our main objective is to contribute to the development of 
efficient SAT solvers by implementing BCO algorithm to 
3-SAT problem. We evaluate different BCO algorithms 
by comparing two evaluation functions. In addition, four 

loyalty functions are proposed and their influence 
investigated. Advantage of the BCO model over stand-
alone heuristics is that it offers certain reasoning when 
comparing different solution. In addition, the population 
serves to maintain knowledge about the search space. The 
rest of this chapter is organized as follows. The next 
section contains brief introduction into types of SAT sol-
vers, together with a description of WalkSAT heuristic. In 
Section 3 we describe BCO method and its variant, BCOi, 
adjusted for 3-SAT problem. Description of experiments, 
benchmark set of problem instances and results are pro-
vided in Section 4. Conclusions are provided in Section 5. 

2. SAT SOLVERS 

New algorithms become more complex, having more 
parameters when compared with older SAT solvers [4]. 
We can distinguish so called Conflict Driven Clause Le-
arning (CDCL) from Stochastic Local Search (SLS). The 
most general classification of SAT solvers is the one that 
differs complete and incomplete search algorithms [6](pg. 
33). The complete search algorithms are also known as 
systematic search algorithms as they investigate the sear-
ch space in systematic manner, thus being able to guaran-
tee that the solution exists or not. As such, complete sol-
vers can be used to rule out unsatisfiable instances. Com-
plete solvers however can become inefficient on problem 
instances for which clause-to-variable ratio becomes hig-
her (until reaching certain threshold). Incomplete solvers 
are known for their speed in finding solutions of satis-
fiable instances, especially for hard ins-tances. Many in-
complete solvers were developed on the top of previous 
versions, yielding state-of-the art solvers. However, they 
have serious drawback when dealing with unsatisfiable 
instances: they are not able to prove that these formulae 
cannot be satisfied.  



298 

2.1. SLS solvers 

Meta-heuristic methods, implemented for dealing with 
SAT problems, can be recognized as incomplete SLS sol-
vers. Almost all SLS solvers start with random assign-
ment. The main goal is to direct the process of guessing 
variable values that would lead to a solution. The manner 
in which variable is chosen depict each heuristic. After 
the evaluation of the initial assignment, if all clauses are 
satisfied, work of the solver is done. Otherwise, one of the 
variables is selected and changed (flipped), and all corres-
ponding data structures are updated and the new cycle of 
evaluation can start. Until today hundred of SLS solvers 
were developed, mostly based on improving previous 
ideas and by incorporating different data structures and 
other implementations tricks. Among vast number of 
them, general algorithms can be identified that are still 
basic part of most efficient SAT solvers, such as: (1) 
GSAT, (2) WalkSAT [5].  The simplest SLS algorithms 
are considered to follow uniform random walk paradigm.  

2.2. Random Walk 

A more elaborated version of simplest SLS algorithm 
implements what is known as conflict-directed random 
walk steps [6] (pg.269). The algorithm is based on 
selecting uniformly at random an unsatisfied clause, follo- 
wed by a random selection of variable from this clause. 
The approach is also known as Focused Random Walk. 
Theoretical proof that such focused SLS solvers can solve 
2-CNF problems in O(n2) steps was provided in 1991 [7]. 
A theoretical proof for a 3-CNF SLS solver was pro- 
vided in [8], however, it requires restarts after 3n steps. 

2.3. WalkSAT 

Following the introduction of several SLS solvers in [5], 
the authors proposed different approach for selection of 
variables, so called WSAT (WalkSAT). Algorithm is con-
sidered to be a focused random walk algorithm since the 
first step after the initial assignment is to choose uniform-
ly at random an unsatisfied clause. A variable from this 
clause is then picked either randomly or following a gree-
dy rule. Greediness in WalkSAT is the same as the one in 
GSAT where the variable that leads to least number of 
unsatisfied clauses is favorized. Such characteristic is 
usually established by parameter break(x) of variable x. 
Until today there are many version of WalkSAT. In Fig. 1 
a pseudo-code of WalkSAT, as described in [5], is presen-
ted. The choice of variable inside of randomly picked 
unsatisfied clause depends on the value of parameter 
break(x) and noise parameter p (usually set to 0.5). 

3. SWARM INTELLIGENCE FOR SAT 

The implementation of the BCO algorithm on 3-SAT 
problem was for the first time tackled here. In literature 
there exist a number of papers that have used nature-
inspired algorithms to solve various SAT problems [3]. 
Among population-based, we found implementation of 
Marriage in Honey Bees Optimization Algorithm (MBO) 
to 3-SAT [9]. The author compared his results with 
WalkSAT and showed that MBO exhibit better perfor-
mance. However, it can be demonstrated that different 

Pick an unsatisfied clause C
   For each variable x in clause C  

   Calculate u:=minx  C break(x) 
   If u=0 
      variable with break(x)=0 is flipped 
   Else 
      With probability p, pick a variable 
      With probability 1-p, repeat GSAT scheme 
 

 Figure 1: Pseudo-code of WalkSAT 
implementations of WalkSAT can lead to different perfor-
mances, as they all are sensitive to types of structures 
used and other development tricks. This motivated us to 
uncover existing code, used as a state-of-the-art imple-
mentation http://www.cs.rochester.edu/u/kautz/walksat/ 
(Version 51). 

3.1. BCO Method 

The first version of the BCO algorithm was developed as 
a constructive procedure, where each artificial bee is 
building a solution from scratch [2]. Later variant of BCO 
used modification of complete solutions, known as 
improvement BCO (BCOi) [10]. Both variants of BCO 
are based on engagement of a group of artificial bees (B 
individuals) in the search for optimal solution. The 
homogeneity of bees is being presumed, that is, all 
artificial bees are involved in foraging process in the same 
way. The search process is conducted through iterations, 
until some predefined stopping criterion is satisfied. An 
iteration of the BCO algorithm can be represented as a 
composition of two alternating phases: forward pass and 
backward pass. During the forward pass, all bees are exp-
loring the search space by performing certain (predefined) 
number of moves to either construct the part of solution, 
or modify the existing one. During the backward pass, all 
bees share information about the discovered solutions. 
They pass through three stages: 1. Evaluation; 2. Loyalty 
decision; 3. Recruitment. The number of forward/back- 
ward passes during iteration is controlled by BCO para-
meter, NC. The number of moves in forward pass can be 
set provisory. The usual way to decide on bee’s loyalty 
was to use the function (1). Recently, new loyalty fun-
ctions were proposed and classified as Class I and II [11]: 

(1)  
1

0, 1
bO

u u
bp e


   (6) 

 1

5, 1 1
bO u

u u
bp e




   

(2)  
 11 bO

bp e   (7) 

1

6, 1 log
bO

u u
bp e




   

(3)  2
b bp O  (8) 

 
1

log 17, 1
bO

u uu
bp e




   

(4) 

1

3,
b

it it

O

n n
bp e




  (9)
 2 18 bO

bp e    

(5)  
1

4, 1
bO

u u
bp e




   

(10) 
   

 
1 log 1

log 29, 1
bO u

uu
bp e

 


   

 
Class I corresponds to functions of one parameter (Ob), 
and Class II are two variable functions: they depend on Ob 
and counter u or iteration counter nit. The recruitment is 
performed in the usual way [2,11]. 
 



 

299 

3.2. BCOi for 3-SAT 

Improvement version of the BCO algorithm (BCOi) is 
based on the transformations of complete solutions in 
order to obtain the best possible final solution. At the 
initialization stage, one complete solution is assigned to 
each bee. During each forward pass bees modify some 
components of their complete solutions in order to 
enhance them.  However, BCOi implementation for 3-
SAT problem disregards a classical part of the execution: 
the re-initialization at the beginning of each iteration. 
Instead, it appoints an initial assignment to each bee once 
before the start of the search (Fig. 2). Without the classi-
cal re-initialization, the number of moves controlled by 
parameter NC, does not directly influence search trajec-
tory of BCOi. The forward pass counter (u), (and conse-
quently parameter NC), however, is used for calculating 
loyalty of each bee for Class II loyalty functions. In order 
to control the number of flips performed during the for-
ward pass, new parameter NCT has been introduced. Usu-
ally, the number of improvements can be derived as a fun-
ction of restriction imposed by the problem. For example, 
in [10] BCOi algorithm was used for solving of p-center 
problem. This problem imposed restrictions on the num-
ber of modifications in the forward pass: maximally the 
number of centre modifications can be performed. In case 
of 3-SAT such restrictions do not exist. The objective was 
to prohibit parameter NCT to exceed the minimal number 
of flips needed for standalone heuristic to solve a problem 
instance. Specifically, we have opted for the number of 
Boolean variables of the corresponding 3-SAT instance 
(n). For example, when dealing with 3-SAT problem with 
100 variables, the BCOi algorithm was performing 
number of modifications within the range of [1,100]. 

3.3 Analysis of evaluation function 

Two different evaluation functions were analyzed. First 
one exploits solely the number of unsatisfied clauses, de-
noted as fb

1=numfalse(b), where parameter numfalse(b) is 
defined for each bee b as the number of unsatisfied 
clauses. Second evaluation function, denoted as 
fb

2=breakcount(b), exploits a decision step from 
WalkSAT to obtain a different perspective to quality mea-
sure, as a way of supporting the efforts of the heuristic. 
The evaluation function fb

2 can be best described by Fig. 3 
pseudo-code. In order to calculate values based on para-
meter break one first needs to pick a variable. Therefore, 
we have concentrated the search onto those variables that 
belong to unsatisfied clauses. Then, for each of the three 
variables, minimal value of break(x) is determined, thus 
imitating a step of walksat heuristic. The bee that would 
perform the next best move is marked as the best one.  Of 
course, to define an evaluation function one could also 
consider other parameters such as make or score [5] or 
their combination, which was not investigated here.  

4. EMPIRICAL ANALYSIS OF BCO 

4.1 Problem instance and performance measure 

Problem instances belong to the uniform random 3-SAT 
family that consists of randomly generated 3-CNF formu-

las [12]. For analysis of BCO, a set of instances with 100 
variables and 430 clauses was used, provided in SATLIB 
library as uf100-430. The set originally consists of 1000 
instances. To decrease total time of experiment and con-
tribute do the reproducibility, we have opted for the first 

100 instances (uf100-01.cnf – uf100-0100.cnf). Performa-
nce measure of the BCOi algorithm is the total number of 
flips (nflip) needed to either solve the problem instance, or 
to reach the stopping criterion. It should be noted that nflip 
Initialization: Read input data. 
Provide random assignments to each bee. 
Do 

(1) For (b = 0; b < B; b++) 
(a) For (i = 0; i < NCT; i++) 

(a.i) Flip the variable using a heuristic. 
(a.ii) if (F(x) = TRUE) STOP. 

(2) For (b = 0; b < B; b++) 
Evaluate the solution of bee b; 

(3) For (b = 0; b < B; b++) 
Loyalty decision for bee b; 

(4) For (b = 0; b < B; b++) 
If (b not loyal )  
   Choose a recruiter by roulette wheel. 

   Update xbest and f(xbest). 
While stopping criterion is not satisfied or solution found.
return (xbest, f(xbest)). 
 

Figure 2: Pseudo-code for BCOi 
showed high variability with a change of seed, which is 
why each experiment was repeated 100 times. Therefore, 
parameter Nflip=maxseed[1,100]nflip, was  used as a measure 
of success of an experiment. If for some seed BCOi did 
not succeed to find a model, the response value Nflip takes 
MAXFLIPS and the number of unsatisfied clauses is con-
sidered (nun). It was also observed that time per iteration 
is constant during the execution.  
 
For (b = 0; b < B; b++) 
   Pick an unsatisfied clause C 

   For each variable x  C  
         breakcount(b)=minx  C break(x) 

 

Figure 3: Algorithmic structure of the fb
2 

4.2 Experimental setup 

The stopping criterion for all considered algorithms was 
controlled by setting maximal number of flips 
(MAXFLIP). All experiments were conducted on Blade 
cluster with processors Intel(R) Xeon(R) CPU E5649 @ 
2.53GHz and 24GB RAM, gcc version 4.4.7. Impleme-
ntation was done in C programming language. The num-
ber of independent runs was set to 100. The parameter 
space of BCOi is provided in Table 1. All values of para-
meter configurations are integers. 
 
Table 1: Parameter space for BCOi 

Parameter Domain 
Evaluation numfalse, breakcount 

Loyalty function pb
i, i[0,..,9], b[1,..,B] 

B [1,7] 
NC 10k, k[1,6] 

NCT [1,n] 
 
Parameter n represents the number of Boolean variables. 
The number of bees was small due to the expected over-
head caused during an exchange of information in back-
ward pass. The choice of values of other quantitative 
BCO parameters was adjusted so that the time to run all 



300 

tests was less than a week, while trying to cover different 
regions of parameter space. Values of NC are taking disc-
rete steps, while the maximal value has been determined 
by observing analytical expressions of loyalty functions. 
Actually, after NC reaches 60, measured outcomes for dif-
ferrent loyalty functions lead to similar conclusions. The 
maximal value of NCT was set to n, to avoid situations in 
which solution is found before recruitment process has 
begun. Value of parameter MAXFLIP was set to 105, 
based on set of pilot studies conducted prior to this work,  

 
Figure 4: Results for fb

1. 
so that all problem instances are solvable by the 
standalone WalkSAT algorithm on the same computer 
system. More-over, its value is evenly distributed among 
engaged bees. This means that increasing the number of 
bees decreases the maximal number of flips they have in 
order to solve given problem instance.  

4.3 Results 

Due to the space restrictions, the results of BCOi perfor-
mance are illustrated for Class I functions and pb

3 loyalty 
function. For the rest of Class II, the results are omitted. 
Fig. 4 and 5., represent the average value of Nflip (Nav.f.) 
for all problem instances, and different BCOi parameter 
configurations. In Fig. 4 and 5., each colour of the bar 
corresponds to different value of Nav.f.. The reference case 
of performance of WalkSAT is shown when B=1, and 
was used as a starting point from which bars are construc-
ted. In case BCOi found solutions to all 100 instances, 
and was better than the WalkSAT, on the B-NC plane a 
red circle is used. When in average BCOi did not provide 
solutions for all problem instances, colors ranging from 
white to black describe the quality of the response. The 
quality of response corresponds to average number of 
unsatisfied clauses. Fig.4 provides information about the 
success of evaluation function fb

1 and four loyalty functi-
ons of Class I. Loyalty function pb

3 was the most succes-
sful when compared with functions pb

1, pb
2, pb

8.  In order 
to provide better performance, another evaluation func-
tion was used and results presented in Fig. 5. Here, all 
BCOi algorithms exhibited better performance, as all nee-
ded smaller number of flips to find a model. Again, loy-
alty function pb

3 was the most successful. It solved 3-SAT 
instances with less total number of flips, however in the 
same amount of time as the standalone WalkSAT algorit-
hm. It could be interesting to mention that the WalkSAT 
algorithm needed in average 0.0016s to solve all 3-SAT 

instances, while for the best reported results in Fig. 4 and 
5., in average 0.0019s was needed by pb

3 when B=2. 

5. CONCLUSION 

In this paper we have tested two evaluation functions and 
compared four BCOi algorithms with regard to choice of 
loyalty functions. The results show that the most influen-
tial parameter was evaluation function, and that incorpo- 
rating knowledge used in the WalkSAT heuristic has pro- 
vided better results compared with numfalse evaluation 

 
Figure 5: Results for fb

2. 
approach. The future work should analyze different 
mechanism of implementing collected knowledge, such as 
make, score, age into the evaluation process. 

BIBLIOGRAPHY 

[1] Garey, M. R., Johnson, D. S., Computers and 
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, 1979. 

[2] Lučić, P., Teodorović, D., “Bee system: modeling 
combinatorial optimization transportation engineeri-
ng problems by swarm intelligence”, In Prepr. of the 
TRISTAN IV, (2001), 441-445. 

[3] Stojanović, T., Davidović, T., Ognjanović, Z., “BCO 
for the satisfiability problem in probabilistic logic”, 
Appl. Soft Comput., 31 (2015), 339-347. 

[4] Balint, A., Biere, A., Fröhlich, A., Schöning, U., 
“Improving implementation of SLS solvers for SAT 
and new heuristics for k-SAT with long clauses”, In 
Lect. Notes Comput. Sci., 8561 (2014), 302-316. 

[5] Selman, B., Kautz, H. A., Cohen, B., “Noise 
strategies for improving local search”, In Proc. of 
AAAI'94, 94 (1994), 337-343. 

[6] Hoos, H. H., Stützle, T., Stochastic local search: 
Foundations & applications, Elsevier, 2005. 

[7] Papadimitriou, C. H., Yannakakis, M., “Optimizati-
on, approximation, and complexity classes”, J.  
Comput. Syst. Sci, 43(3) (1991), 425-440. 

[8] Schöning, U., “A probabilistic algorithm for k-SAT 
and constraint satisfaction problems”, In Proc. of 
FOCS’99, (1999), 410-414. 

[9] Abbass, H. A., “MBO: Marriage in honey bees 
optimization-A haplometrosis polygynous swarming 
approach”, In IEEE C. Evol. Computat., 1 (2001), 
207-214. 



 

301 

[10] Davidović, T., Ramljak, D., Šelmić, M., Teodorović, 
D., “Bee colony optimization for the p-center prob-
lem”, Comput. Oper. Res., 38(10) (2011), 1367-1376. 

[11] Jakšić Krüger, T., Davidović, T., “Sensitivity 
analysis of the Bee Colony Optimization Algorithm”, 
In Proc. of BIOMA’16, (2016), 64-80. 

[12] Hoose, H. H., Stützle, T., “SATLIB: An Online 
Resource for Research on SAT”, In SAT2000: 
Highlights of Satisfiability Reasearch in the Year 
2000, (2000), 283-292. 

 

 




