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Abstract

The multiprocessor scheduling problem with communication delays that we con-
sider in this paper consists of finding a static schedule of an arbitrary task graph onto
a homogeneous multiprocessor system, such that the total execution time (i.e. the
time when all tasks are completed) is minimum. The task graph contains precedence
relations as well as communication delays (or data transferring time) between tasks if
they are executed on different processors. The multiprocessor architecture is assumed
to contain identical processors connected in an arbitrary way which is defined by a
symmetric matrix containing minimum distances between each two processors. Solu-
tion is represented by a feasible permutation of tasks that is scheduled by the use of
some constructive scheduling heuristic in order to obtain the objective function value,
i.e. makespan. For solving this NP-hard problem, we develop basic Tabu Search and
Variable Neighborhood Search heuristics, where various types of reduced Or-opt-like
neighborhood structures are used for local search. A Genetic Search approach based
on the same solution space is also developed. Comparative computational results on
random graphs with up to 500 tasks and 8 processors are reported. It appears that
Variable Neighborhood Search outperforms the other metaheuristics in average. In
addition, a detailed performance analysis of both the proposed solution representation
and heuristic methods is presented.

Keywords: Task Scheduling, Communication Delays, Metaheuristics, Variable Neigh-
borhood Search, Tabu Search, Genetic Algorithms.

Résumé

Le problème d’ordonnancement à processeurs multiples avec délais de communica-
tion que nous considérons dans cet article consiste à déterminer un ordonnancement
statique d’un graphe de tâches arbitraire sur un système multiprocesseurs homogène de
sorte que le temps total d’exécution (c’est-à-dire le temps auquel toutes les tâches sont
exécutées) soit minimum. Le graphe de tâches contient des relations de précédence ainsi
que des délais de communication (ou temps de transfert de données) entre les tâches si
elles sont exécutées sur des processeurs différents. L’architecture multiprocesseurs est
supposée contenir des processeurs identiques connectés d’une manière arbitraire qui est
définie par une matrice symétrique contenant les distances minimum entre chaque paire
de processeurs. La solution est représentée par une permutation admissible de tâches
ordonnancée par le recours à une heuristique d’ordonnancement constructive donnant
la valeur de la fonction économique. Pour résoudre ce problème NP-difficile, nous
développons des heuristiques de base de types Recherche avec Tabous et Recherche
à Voisinage Variable, où divers types de structures de voisinage Or — Opt réduites
sont utilisées dans la recherche locale. Une Recherche Génétique basée sur le même
espace de solution est également développée. On présente des résultats comparatifs de
calcul sur des graphes aléatoires avec jusqu’à 500 tâches et 8 processeurs. Les résultats
de la Recherche à Voisinage Variable sont, en moyenne, meilleurs que ceux des autres
métaheuristiques. De plus une analyse détaillée des performances de la représentation
de la solution proposée ainsi que des méthodes heuristiques est présentée.

Mots Clés : Ordonnancement de tâches, Délais de communication, Métaheuristiques,
Recherche à Voisinage Variable, Algorithmes Génétiques.
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1 Introduction

The Multiprocessor Scheduling Problem with Communication Delays (MSPCD) can be
stated as follows: tasks (modules or jobs) have to be executed on a multiprocessor system;
we have to find where and when each task will be executed, in order that the total comple-
tion time be minimum. The duration of each task is known as well as precedence relations
among tasks, i.e. which tasks should be completed before some other ones can begin. In
addition, if dependent tasks are executed on different processors, data transferring times
(or communication delays), that are given in advance, are also considered.

Scheduling parallel tasks among processors with and without communication delays is a
NP-hard problem as it was shown in J. D. Ullman (1975). However, some special cases can
be solved in polynomial time as it is described in V. Krishnamoorthy and K. Efe (1996),
T. A. Varvarigou, V. P. Roychowdhury, T. Kailath, and E. Lawler (1996). There are many
extended and restricted versions of the multiprocessor scheduling problem suggested in the
literature (see for example J. Blazewicz, M. Drozdowski, and K. Ecker (2000), P. Brucker
(1998), and M. Drozdowski (1996) for surveys), but the most studied is the case where
there are no precedence relations among tasks and/or no communication delays.

Among classical constructive heuristics, we emphasize CP (Critical Path) G. C. Sih and
E. A. Lee (1993) and LPT (Largest-Processing-Time-first) B. Chen (1993). Many papers
proposing constructive heuristic solutions can be found in the literature (M. Drozdowski
(1996)). Recently metaheuristic approaches have been applied as well.

Genetic Algorithms (GA) have been proposed in I. Ahmad and M. K. Dhodhi (1996),
E. S. H. Hou, N. Ansari, and H. Ren (1994), Y.-K. Kwok and I. Ahmad (1997). The
heuristics developed in I. Ahmad and M. K. Dhodhi (1996), E. S. H. Hou, N. Ansari, and
H. Ren (1994) assumed communication time to be negligible and performed scheduling
onto a complete crossbar interconnection network of processors (the so-called parallel pro-
cessors). In E. S. H. Hou, N. Ansari, and H. Ren (1994) the members of the population
were represented by lists of tasks each list containing tasks associated with one of the
processors. The crossover and mutation operations were defined in such a way as to take
into account the precedence relations between tasks.

A different approach was used in I. Ahmad and M. K. Dhodhi (1996): genetic heuristic
was combined with a list-scheduling heuristic and the so-called Problem Space Genetic Al-
gorithm (PSGA) was developed. The population members (chromosomes) were represented
by arrays of task priorities. The first member in the initial population was determined by
using the CP method in calculating task priorities. The rest of the chromosomes in this
initial population were generated by random perturbations in the priorities (genes) of this
first chromosome. In each generation, a list-scheduling heuristic was applied to all of the
chromosomes to obtain corresponding cost function values (schedule lengths).

In the parallel GA proposed in Y.-K. Kwok and I. Ahmad (1997) members of the pop-
ulation were represented by feasible permutations of tasks. The initial population was
generated randomly with the CP permutation included. An ordered crossover operation
was used to assure that precedence constraints between tasks are not violated. Mutation
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was realized by exchanging positions of two neighbor independent tasks. The whole pop-
ulation was divided into q parts, each processed by a single processor. The best solution
was exchanged between processors every T = Ng/2n iterations n = 1, 2, . . .. Mutation and
crossover probabilities were adaptive, i.e. their values were different on different processors.

In A. Thesen (1998) the Tabu Search (TS) metaheuristics was used to schedule a set of
n independent tasks on a network of m processors. Sequential and parallel TS approaches
were used in S.C. Porto and C.C. Ribeiro (1995), S.C. Porto and C.C. Ribeiro (1996) for
solving MSPCD on heterogeneous processors. Solutions were represented by ordered lists
of tasks associated with processors. Tasks were executed on associated processor in the
order defined by these lists as soon as they became executable. The Swap-1 neighborhood
was defined by moving a task from one processor to all others in turn and placing it in
all possible positions (not violating the precedence constraints). That neighborhood was
reduced by considering only “promising” moves. Recent moves are kept in a tabu list
as forbidden for next ntabu iterations in order to avoid cycling. For calculation of the
objective function value, i.e. scheduling length computation a greedy heuristic DES+MFT
proposed in D. A. Menascé and S. C. S. Porto (1992) is used.

In this paper we exploit several metaheuristic, or frameworks to build heuristics, using
the same solution representation for solving MSPCD. A solution is represented by a feasible
permutation of tasks, obeying precedence constraints (dependencies) between tasks. To
obtain the criterion function value, the Earliest Start (ES) scheduling heuristic is used. We
develop basic VNS, TS and GA approaches, and compare them with each other and with
Multistart Local Search (MLS) and PSGA which we modified for the MSPCD case. All
heuristics are compared, within the same CPU time limit on two sets of random task graphs.
The first type of task graphs is composed of arbitrary graphs, with given graph’s edges
densities, while the second set consists of random task graphs with known optimal solutions
for given multiprocessor architectures. In addition, a sensitivity analysis is performed to
examine the influence of the parameter values on the solution quality.

This paper is organized as follows. The next section contains a combinatorial formu-
lation of MSPCD, while in section 3 it is explained how we apply selected metaheuristics
for solving MSPCD. In Sections 4 and 5 comparative computational results and sensitivity
analysis are presented. Section 6 concludes the paper.

2 The multiprocessor scheduling problem

The tasks to be scheduled are represented by a directed acyclic graph (DAG) defined by a
tuple G = (T, E, C, L) where the node set T = {t1, . . . , tn} denotes the set of tasks; the
edge set E = {eij | ti, tj ∈ T} represents the set of communication edges; C = {cij | eij ∈
E} denotes the set of edge communication costs; and L = {l1, . . . , ln} represents the set
of task computation times (execution times, lengths). The communication cost cij ∈ C
denotes the amount of data transferred between tasks ti and tj if they are executed on
different processors. If both tasks are scheduled to the same processor the communication
cost equals zero. The set E defines precedence relation between tasks. A task cannot be
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executed unless all of its predecessors are completed and all relevant data are available.
Task preemption and redundant execution are not allowed. An example of task graph is
given on Figure 1. Node labels represent task numeration, task lengths are given in a
corresponding table, while edge labels denote communication costs.
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Figure 1: An example of task graph

The multiprocessor architecture M is assumed to contain p identical processors with
their own local memories which communicate by exchanging messages through bidirectional
links of the same capacity. This architecture can be modelled by an undirected graph (G. C.
Sih and E. A. Lee (1993)) or by a distance matrix (T. Davidović (2000), G. Djordjević and
M. Tošić (1996)). The nodes of processor graph represent processors while the edges define
the connection between processors. The element (i, j) of the distance matrix D = [dij ]p×p

is equal to the minimum distance between nodes i and j. Here, the minimum distance is
calculated as the number of links along the shortest path between two nodes. It is obvious
that the distance matrix is symmetric with zero diagonal elements. Figure 2 contains the
picture of a 3-dimensional hypercube of identical processors and the corresponding distance
matrix (p = 8).
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Figure 2: 3-dimensional hypercube multiprocessor architecture

The scheduling of DAG G onto M consists of determining the index of the associated
processor and starting time for each of the tasks from the task graph in such a way as to
minimize some objective function. The usual objective function (that we shall use in this
paper as well) is completion time of the scheduled task graph (also referred to as makespan,
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response time or schedule length). The starting time of a task ti depends on the completion
times of its predecessors and the amount of time needed for transferring the data from the
processors executing these predecessors to the processor that has to execute the task ti.
The time that is spent for communication between tasks ti and tj can be calculated in the
following way

γlk
ij = cij · dlk · ccr,

where it is assumed that task ti will be executed at processor pl, task tj at processor pk. ccr
represents the Communication-to-Computation-Ratio which is defined as the ratio between
time for transferring a unit of data and the time needed to perform a single computing
operation. This definition is different from the CCR parameter of Kwok and Ahmad Y.-K.
Kwok and I. Ahmad (1997) introduced to characterize task graph structure. If both the
tasks are scheduled to the same processor, i.e. k = l, the amount of communication is
equal to zero since dkk = 0. Here, we gave the graph based formulation that is used below
for the implementation of metaheuristic methods. A mathematical programming model of
MSPCD is given in T. Davidović, N. Maculan, and N. Mladenović (2003).

According to classification used in P. Brucker (1998), B. Veltman, B. J. Lageweg, and
J. K. Lenstra (1990) the MSPCD can be denoted by P ∗|prec|Cmax where P ∗ is used to
describe multiprocessor system with identical processors connected in an arbitrary way (not
necessarily complete crossover interconnection as it is the case in parallel architectures). In
other words, we have to schedule tasks with arbitrary precedence constraints and arbitrary
execution times on p identical processors connected in an arbitrary way such that the
makespan is minimized.

3 Applying metaheuristic

In order to apply metaheuristics for solving MSPCD we first need to define a solution space
S and a set of so-called feasible solutions X ⊆ S. Let S be the set of all permutations
of n tasks, and let x, (x ∈ X) be a feasible solution (feasible permutation means that
the order of tasks in that permutation obeys precedence constraints defined by the task
graph: a task cannot appear before any of its predecessors or after any of its successors
in a feasible permutation). Having a feasible permutation x, we are able to evaluate the
objective function value in a unique way, if we follow always the same rule of assigning
tasks to processors (for example, ES rule) in the order given by that permutation (see
I. Ahmad and M. K. Dhodhi (1996) and T. Davidović (2000)). Therefore, the solution set
of MSPCD can be represented by S.

3.1 Neighborhoods

By presenting a solution of MSPCD as permutation of tasks, we can use several neigh-
borhood structures analogous to the very well known ones used in solving the Travelling
salesman problem, such as 2-opt, 3-opt, Or-opt etc. A solution x′ (or a tour that consists
of n cities) belongs to a k-opt neighborhood of x if it has exactly k different and n − k
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same edges as x. Special cases of the 3-opt neighborhood are known as Or-opt (I. Or
(1976)) neighborhoods, where 1,2 or 3 consecutive cities in the tour are inserted between
all other cities in the tour. Notice that 1-Or-opt neighborhood is usually called insertion
neighborhood. Observe also that an interchange neighborhood (where cities exchange their
places in the tour) is a special case of 4-opt neighborhood, since four edges in the tour are
reconnected. It is necessary to point out here that there is no complete analogy in the
neighborhood definitions and we will use term Swap to denote Or-opt-like neighborhoods.
Now we give more details regarding neighborhoods used for solving the MSPCD, and later
we explain which among them we include in the list for Variable Neighborhood Descent
(VND) local search.
Swap-1. A Swap-1 neighbor of a feasible solution x is defined by moving a task from one
position to another. For example, swap-1 neighbors of the feasible permutation 1-3-2-5-7-4-
6-9-8-10 for the task graph given on Figure 1 are 1-2-3-5-7-4-6-9-8-10, 1-2-5-3-7-4-6-9-8-10,
and so on (see Figure 3). The total number of feasible permutations in this example is
74, while edge density ρ equals 0.31. These two parameters are closely connected and (as
we will explain in Section 5) they strongly influence the quality of the heuristic solutions
obtained.

Figure 3: Examples of Swap neighborhoods

Swap-2. A Swap-2 neighborhood is defined by changing the positions of two succeeding
arbitrary tasks.

Swap-3. In the Swap-3 neighborhood we move three succeeding tasks between all possible
two tasks (Figure 3);
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Interchange (IntCh). The IntCh neighborhood is defined by all possible exchanges of
positions of two arbitrary tasks. Neighborhoods are reduced because only feasible permu-
tations are considered, i.e., permutation 1-7-3-2-5-4-6-9-8-10 is not in the Swap-3 neigh-
borhood of permutation 1-3-2-5-7-4-6-9-8-10 from the previous example (3-2-5 is moved
after 7) since it is not feasible (see Figure 1).

In this paper we experimented with all these neighborhoods as well as with the combi-
nations of some of them (or even all of them). The most natural combination is Swap-3;
Swap-2; Swap-1 (in that order), which we called Swap-321 for short. We used this com-
bination when trying to improve the scheduling results of basic variants of our heuristics.
The basic idea of the Swap-321 is “try to improve the result with a small number of big
moves first and then perform fine moves since the number of fine moves is larger”. Ac-
cording to task dependencies defined by precedence relations between tasks, it is obvious
that the Swap-3 neighborhood is the smallest one, since the probability to find dependent
tasks between 4 chosen ones is bigger then between two tasks only.

The next step in applying metaheuristics is to decide how to represent the solution, i.e.,
what data structure should be used to make our implementation more efficient? Here we
use a “double-link” data structure which allows us to generate a neighbor in O(1) steps.

For each neighbor in a selected neighborhood we have to calculate the objective func-
tion value f (i.e. schedule length, makespan). Updating f is not easy because of the data
dependencies and the communication delays between tasks (whose values may be different
for different schedules since they depend on tasks allocation). Therefore, we have to cal-
culate the value for f each time we generate a new neighbor. The calculation of f involves
the application of a selected constructive scheduling rule, with the usual complexity of
O(n2p). To reduce the execution time spent for scheduling we performed reallocation only
for changed part of feasible permutation. For example, starting from 1-3-2-5-7-4-6-9-8-10,
we determine Swap-1 neighbor 1-3-2-5-7-4-6-8-9-10 and perform scheduling only for tasks
8, 9 and 10. To avoid neighbor duplication we reduce neighborhoods by considering one-
side moves only. More precisely, neighborhood search is performed by moving tasks only
to the right (FORWARD search) or only to the left (BACKWARD search) as illustrated
in Figure 4.

Figure 4: Neighborhood search directions

Notice that the reduced neighborhoods obtained by forward and backward search can
differ but jointly they cover the whole neighborhood. This obvious property is illustrated
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bellow on the example of Figure 1. Starting from the feasible permutation 1-2-3-4-5-6-7-
8-9-10 by performing only forward (backward) search we obtain following neighbors:

forward search backward search
1-3-2-4-5-6-7-8-9-10 1-2-3-4-5-6-7-9-8-10
1-2-3-5-4-6-7-8-9-10 1-2-3-4-5-6-8-7-9-10
1-2-3-4-6-5-7-8-9-10 1-2-3-4-5-7-6-8-9-10
1-2-3-4-6-7-5-8-9-10* 1-2-3-4-7-5-6-8-9-10**
1-2-3-4-5-7-6-8-9-10 1-2-3-7-4-5-6-8-9-10**
1-2-3-4-5-6-8-7-9-10 1-2-3-4-6-5-7-8-9-10
1-2-3-4-5-6-7-9-8-10 1-2-3-5-4-6-7-8-9-10

1-2-5-3-4-6-7-8-9-10**
1-3-2-4-5-6-7-8-9-10

We marked by star (*) the neighbor which is only in the forward part and by (**) the
neighbors that are only in the backward part of Swap-1 neighborhood.

In all heuristics we start with (at least one) initial solution x which can be determined
as the first feasible permutation in topological order, or permutation obtained by the use
of some constructive heuristic method (like LPT or nonincreasing CP priority of the tasks)
or any randomly chosen feasible permutation.

Local search (LS) in such a neighborhoodN (x) of the given initial solution x is defined as
performing scheduling for all the neighbors and calculating the obtained schedule lengths.
If a better solution x′ is found we move there and look for improvement in the neighborhood
N (x′) of this new solution. This process is repeated until there is no better solution in
N (x). Rules for LS are as follows:

1. Initialization. Select an initial solution x (at random or by the use of some construc-
tive heuristic method).

2. Repeat

(a) Search for x′ ∈ N (x) such that the schedule length for x′ is less than the schedule
length for x, i.e. f(x′) < f(x).

(b) Set x = x′

until there is no such x′.
We try to improve LS results by applying metaheuristic rules to the local minimum solution
obtained.

3.2 Multistart Local Search (MLS)

MLS is realized by restarting LS from random initial feasible permutations until a stopping
criterion (number of restarts, CPU time limit) is satisfied and save the best obtained local
minimum:
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Repeat

1. Initialization. Select an initial solution x (at random). If this is the first
iteration set xopt = x.

2. LS. Apply some Local Search procedure with x as an initial solution;
denote with x′ the obtained local optimum.

3. If the schedule length of x′ is less that the schedule length of xopt, set
xopt = x′.

until a stoping criterion is satisfied.

3.3 Variable Neighborhood Search (VNS)

To describe the VNS approach (see P. Hansen and N. Mladenović (1999), P. Hansen and
N. Mladenović (2001)b, P. Hansen and N. Mladenović (2001)a, P. Hansen and N. Mladen-
ović (2002), N. Mladenović and P. Hansen (1997)), let x∈X be an arbitrary solution and
Nk, (k =1, . . . , kmax), a finite set of pre-selected neighborhood structures. Then Nk(x) is
the set of solutions in the kth neighborhood of x. Steps in the basic VNS are:

Initialization. Find an initial solution x ∈ X; choose a stopping condition.
Repeat until the stopping condition is met:

1. Set k = 1;
2. Until k = kmax repeat the following steps:

(a) Shaking. Generate a point x′ at random from the kth neighborhood of x, (x′ ∈
Nk(x));

(b) Local search. Apply some local search method with x′ as initial solution; denote
with x′′ the obtained local optimum;

(c) Move or not. If this local optimum is better than the incumbent, move there
(x = x′′), and continue the search with N1 (k = 1); otherwise, set k = k + 1.

This is the basic version of the VNS procedure; several modifications and refinements
are described e. g. in P. Hansen and N. Mladenović (2001)a, P. Hansen and N. Mladenović
(2002).

The role of the shaking operation is to assure moves which bring the search far from
the currently best local minimum in a progressive way. This assures intensification of
search around good solutions found as well as diversification as the size of neighborhoods
is usually increasing.
In our implementation, shaking in the k-Swap neighborhood (i.e. the selection of random
neighbor in k-th neighborhood) is realized by performing k times the following steps:

1. select a task to be moved at random;
2. calculate the moving scope for that task, i.e., find indices of its last predecessor and

its first successor (with respect to the incumbent solution);
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3. find the position where the selected task will be inserted (a random number between
the two indices found in the previous step);

4. make a move, i.e., insert the selected task in the new position obtained in step 3.
Please note that we use different notation for neighborhoods used in LS and shake

procedures. For LS Swap-k means that we move k succeeding tasks, while shake in k-Swap
is the substitution for performing k times a random Swap-1 move.
For k-interchange neighborhood, the procedure for shaking is as follows:

1. for i = 1, k

(a) DONE = FALSE;
(b) while not DONE

i. select randomly two tasks;
ii. if they can exchange their positions, i.e., if those tasks are independent and

all the tasks between these two are neither successors of the first task nor
predecessors of the second one;
A. DONE = TRUE;
B. exchange the positions of these two tasks;

The main parameter for the VNS is kmax, i.e., the maximum number of neighborhoods
used (P. Hansen and N. Mladenović (2001)a, N. Mladenović and P. Hansen (1997)). In
some modifications of the basic VNS additional parameters can be used such as nstep–step
for changing the neighborhoods, plateaux–probability to take a solution with scheduling
length equal to current minimum solution as a new minimum and so on (see P. Hansen and
N. Mladenović (2001)b, P. Hansen and N. Mladenović (2001)a, P. Hansen and N. Mlade-
nović (2002)). Moreover, the neighborhood explored in step 2b is not necessarily a single
one; rather it may consists of a combination of neighborhoods, Swap-321 for example. In
another words, we may use the Variable Neighborhood Descent (VND) as a LS procedure
(P. Hansen and N. Mladenović (2001)a, P. Hansen and N. Mladenović (2003)).

Variable Neighborhood Descent (VND). It is deterministic variant of VNS; the
idea is to get local minimum with respect to all pre-defined neighborhood structures
N1, N2, . . . , N�max . Its steps are:

Initialization. Select the set of neighborhood structures N�, for � = 1, . . . , �max, that
will be used in the descent; find an initial solution x;

Repeat the following sequence until no improvement is obtained:
(1) Set �← 1;
(2) Repeat the following steps until � = �max:

(a) Exploration of neighborhood. Find the best neighbor x′ of x (x′ ∈ N�(x));
(b) Move or not. If the solution x′ thus obtained is better than x, set x← x′ and

�← 1; otherwise, set �← � + 1.
As mentioned before, in the Parametric analysis section we investigate different choices

of �max = 7 neighborhoods: Swap-1, Swap-2, Swap-3 (forward and backward) and IntCh.
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3.4 Tabu Search (TS)

TS metaheuristic (F. Glover and M. Laguna (1997)) is implemented by the use of variable
sized tabu list (TL) to store tasks that should not be moved in succeeding iterations.
The maximum length of the tabu list (NTABU) is a parameter, and the actual length is
determined randomly in each iteration. This variant happens to perform better than the
basic one with fixed length of TL.

Initialization. Find an initial solution x ∈ X; set TL = ∅; choose a stopping condition.
Repeat until the stopping condition is met:

1. Update |TL| (length of TL). Generate randomly an integer in range (1, NTABU) to
represent the actual length of TL in this iteration.

2. LS. Find x′ ∈ N (x) \ TL with minimum value for schedule length.
3. Update x. If the scheduling length of x′ is less than the scheduling length of xopt set

xopt = x′

4. Move. Set x = x′.
5. Update TL. TL = TL ∪ {x′}; if |TL| > NTABU then TL = TL \ {xt} where xt is

the oldest task in TL (FIFO update rule).

3.5 Genetic Algorithms (GA)

Feasible permutations are members of the population in GA, ordered crossover and muta-
tion are realized as in Y.-K. Kwok and I. Ahmad (1997). These operations are applied to
all members of the population (with given probabilities).

Initialization. Generate Np different feasible solutions (by the use of constructive heuris-
tic methods and/or randomly).

Repeat until the stopping condition is met:

1. Evaluation. Calculate values for schedule length of each solution.
2. Update. Save solution x′ with minimum schedule length.
3. Create new generation

(a) Selection. Choose solutions to be moved to the next generation.

(b) Crossover. With a given probability apply the crossover operator to all pairs of
solutions.

(c) Mutation. With a given probability apply the mutation operator to all tasks in
each solution.

We also implemented PSGA developed in I. Ahmad and M. K. Dhodhi (1996) and
adopted it to MSPCD by taking into account required communications and multiprocessor
architecture. Parameters of GA and PSGA are pxover–crossover probability, pm–mutation
probability, Np–population size (number of solutions in population), and Ng–number of
generations (if this is stopping criterion), see D. E. Goldberg (1989).
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All metaheuristics are compared on random task graphs within the same CPU time
limit and results are reported in the next section. A performance analysis is presented in
Section 5.

4 Experimental results

We implemented the proposed heuristics in the C programming language on an Intel Pen-
tium III processor (800 MHz) with Linux operating system.

To illustrate the efficiency of our approach we tested it on randomly generated task
graphs containing up to n = 500 tasks. Due to the lack of adequate benchmarks for this
variant of scheduling problem, we generated our own test examples. These examples are
described in T. Davidović and T. G. Crainic (2003) and contain two type of random task
graphs. The first group of task graphs is generated with preselected edge density ρ ranging
from 0.2 to 0.8. These task graphs are scheduled onto different multiprocessor architectures
containing up to p = 8 processors. Sparse task graphs (with ρ = 0.2) are scheduled onto a
3-dimensional hypercube (see Figure 2). Task graphs with ρ = 0.4, 0.5 are scheduled onto
a 2-dimensional hypercube (ring of four processors), while dense task graphs (ρ = 0.6, 0.8)
are allocated to p = 2 processors. The selection of multiprocessor architecture was guided
by experimental analysis from T. Davidović and T. G. Crainic (2003). It appeared that
dense graphs can not benefit from adding new processors to the multiprocessor system since
too much time is spent on data transfer between tasks scheduled to different processors.
For each n we generated 30 task graphs with different ρ and other relevant characteristics
trying to generate different types of examples (dense-sparse, computation-communication
intensive, with uniform-nonuniform task-communication lengths, etc.).

We compared schedule length obtained by the use of VNS, TS, MLS, PSGA, and GA
metaheuristics. Comparative results are presented in Table 1. The first column of that
table contains the number of tasks in the task graphs, the best (in average) scheduling result
(among all heuristics) is given in the second column, while in the remaining seven columns
average values of heuristic schedule lengths are presented. Third column contains average
over 30 examples value of constructive heuristic (CP based permutation scheduled by ES
rule) solutions which serve as the initial value for all iterative (meta) heuristic methods.
The average value of local minimum schedules starting from the initial solution is given in
column four. The remaining 5 columns contain average values of results obtained by basic
variants of heuristic methods.

Now, let us summarize the parameters we used during the different heuristics searches.
For VNS we used Swap-1 neighborhood in forward direction. The value of kmax parameter
is set to 20, and first improvement (FI) search is explored according to the result from
P. Hansen and N. Mladenović (1999)a and our experiments showing that FI search performs
faster and better than best improvement (BI) one starting from random initial solution
as it is the case each time shaking rule is applied. The values of other parameters are
kstep = 1 and plateaux = 0.0. The values of these parameters are determined according to
previous experience and will be analyzed later (see the next section). In TS the Swap-1
neighborhood is explored in forward direction. The value for NTABU is set to n/2, and
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Table 1: The Multiprocessor scheduling: average results for each n over 30 random tests.
Best % Deviation

n (av.) CP LS VNS TS MLS GA PSGA

50 437.5 37.4 31.6 0.02 0.15 0.09 0.08 5.73
100 983.5 26.7 19.9 0.01 0.07 0.02 0.02 3.92
200 2137.6 17.1 12.2 0.01 0.08 0.02 0.03 2.56
300 3251.74 13.96 8.8 0.01 0.11 0.06 0.04 4.12
400 4454.46 12.4 7.7 0.01 0.12 0.08 0.02 5.17
500 5599.5 11.5 7.2 0.01 0.08 0.03 0.03 4.66

Table 2: The CPU time for heuristic scheduling: average results for each n over 30 random
tests.

CPU time CPU time (seconds)
n (max.) VNS TS MLS GA PSGA

50 35.6 16.89 33.16 18.33 25.02 28.96
100 140.0 87.20 116.30 63.85 112.22 129.13
200 616.0 488.30 608.11 532.43 551.41 566.87
300 1400.0 924.19 1288.12 886.73 1227.33 1335.28
400 2440.0 1694.63 2360.70 1866.20 2262.52 1992.70
500 3860.0 2693.31 3032.18 2270.62 3622.98 3620.83

the actual value for the length of the tabu list is determined randomly in each iteration.
The values of GA (PSGA) parameters are Np = 120, pxover = 60 and pm = 0.01.

For the stopping criterion we chose tmax, defined as the time needed by GA to perform
600 generations. Average CPU time spent by each method to find the best heuristic
solution obtained are presented in Table 2 with number of tasks and maximum allowed
CPU time in first two columns. We tried with smaller number of GA generations, but it
turned out that the number of iterations for other heuristics was very small (10 at most
for MLS, and kmax in VNS was reached 1-2 times only).

To examine the search process, we followed the improvement of global minimal solution
in time. The results are presented on Figure 5. We set n = 200, choose one example
(task graph) from the 30 of the same size, and presented the changes in the value of global
minimal solution during the [0, tmax] time interval for all heuristic methods.

As can be seen from Table 1 and Figure 5, VNS performs best in average for this type of
randomly generated task graphs. However, we can not discuss the quality of the heuristic
solutions obtained since we have no information about the best possible solution and the
most suitable multiprocessor architecture for these task graphs.

Therefore, we generated a second set of random task graphs with known optimal sched-
ule lengths on given multiprocessor architecture. The generation procedure was described
in T. Davidović and T. G. Crainic (2003),Y.-K. Kwok and I. Ahmad (1997). Here, we
selected task graphs generated for 2-dimensional hypercube multiprocessor architecture,
i.e. we set p = 4 (processor ring).
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Figure 5: Comparison of heuristic methods for first type task graph with n = 200

For each n we generated ten task graphs with different edge densities ρ (see T. Davidović
and T. G. Crainic (2003)). Scheduling results are given in Table 3. Each row of this table
shows the average results for ten test instances of the same size. The corresponding CPU
times spent by each heuristic for finding the best solution are given in Table 4, as well as
the maximum allowed CPU time (equal to the time spent for 600 generations of GA) given
in the second column.

As in the previous case, we selected n = 200, ρ = 50%, and presented the improvements
in the time of the global minimal solution for all heuristic methods on Figure 6. We can
see that the curves are not smooth as in the previous case. The convergence is rapid at the
beginning, and then it is almost impossible to improve the solution anymore. Moreover,
we can notice that the methods behave differently for the two types of task graphs. MLS
is the worst method for the first type of task graphs, while it performs quite well for the
task graphs with known optimal solutions. On the other hand, GA’s performance is better
for the first type task graphs.

Tables 1 and 3 show that PSGA has the worst performance. This observation coincides
with previously published results (T. Davidović and N. Mladenović (2001), Y.-K. Kwok
and I. Ahmad (1997)). The explanation lies in the solution representation. The priorities
are not sufficient to uniquely define a scheduling order of tasks, implying that additional
search is needed in each scheduling step. This means that PSGA spends more time for
evaluation of the objective function value than the other heuristics, so less time remains
for genetic operations. We proved that fact by letting PSGA run for 600 generations and
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Table 3: The Multiprocessor scheduling on random test instances with known optimal
solution.

% Deviation
n fopt CP LS VNS TS MLS GA PSGA

50 600 48.2 22.3 2.42 8.3 5.32 15.7 12.43
100 800 57.54 36.22 10.14 20.79 14.35 25.46 35.37
150 1000 74.7 38.96 11.47 24.91 19.5 44.33 42.5
200 1200 86.97 59.78 24.5 38.37 21.18 49.47 35.95
250 1400 78.48 61.93 31.05 55.1 37.03 65.69 46.53
300 1600 82.82 66.17 53.43 64.23 51.33 72.92 78.99
350 1800 82.24 61.15 35.51 55.59 36.04 63.52 72.88
400 2000 83.66 80.96 47.21 69.88 57.03 26.37 77.99
450 2200 85.36 58.85 31.76 55.6 45.59 30.14 56.69
500 2400 84.87 38.59 37.45 37.41 52.98 76.96 69.76

Av. 1500.00 76.49 52.49 28.5 43.02 34.03 47.06 52.91

Table 4: The CPU Time for scheduling random test instances with known optimal solution.
CPU Time (seconds)

n (max.) VNS TS MLS GA PSGA

50 41.0 9.98 6.72 11.13 6.81 12.42
100 180.0 88.40 43.58 76.62 55.9 89.15
150 430.0 231.9 315.1 193.27 162.28 443.67
200 750.0 461.58 539.15 297.02 353.1 777.99
250 1200.0 864.12 945.21 702.68 556.44 1059.78
300 1600.0 1106.97 1042.15 852.52 837.58 744.00
350 2300.0 1709.71 1549.62 1425.41 865.38 1180.29
400 3000.0 2352.4 722.51 1833.1 1500.27 2069.75
450 3500.0 2956.76 1260.39 1527.29 1871.9 1597.36
500 4500.0 1992.32 3334.33 3404.45 2649.23 2861.92

Av. 1750.1 1177.41 975.88 1032.35 885.89 1083.63

it required a several times longer time than GA. Moreover, results were still worse than
those obtained by the GA and other heuristics. This argument and the different solution
representation (arrays of task priorities vs. permutations of tasks) are sufficient reasons to
exclude PSGA from further consideration.

As can be seen from the Table 3, the average schedule lengths were more than 28%
(even more than 50% for n=300) above the optimal ones even for the best, VNS obtained,
schedules.

To investigate the reason for such high deviations we performed a parametric analysis
for the VNS heuristic. The results are reported in the next section.
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Figure 6: Comparison of heuristic methods for the second type of task graph with n=200
and ρ = 50%

5 Parametric analysis

In this section we describe experiments related to the analysis of the influence of different
parameters on the results obtained with permutation based heuristics to MSPCD. We re-
strict the explanations to the heuristic that performed best in our previous experiments,i.e.,
VNS. It is straightforward to extend the obtained conclusions to the other heuristics which
use a systematic search over preselected neighborhoods. On the contrary, GA exploits a
lot of randomness in searching for the best solution, and therefore a different reasoning
should be applied.

In Tables 1 and 3 we presented the results obtained by basic variants of all heuristic
methods we implemented. Here, we consider only a few possible improvement directions.
Obviously, methods can be improved in some other ways, but here, our first intention is to
examine the reasons for such the large deviations from the optimum values observed and
to propose ideas which might help to overcome that problem.

First, we perform an analysis similar to that one described in T. Davidović and T. G.
Crainic (2003), but we also consider the parameters connected to the meta-part of the
VNS and other heuristics. Let us set n=200 and describe in details the results for this
size of task graphs. For the other values of n, results are similar. In Table 5 are given
complete scheduling results for VNS (we presented only the summary line in Table 3).
The optimal schedule length (SLopt = 1200 computing cycles) is obtained by scheduling
feasible permutation 1, 2, . . . , 200 using the ES rule.
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Table 5: Complete scheduling results of VNS for random test instances with n = 200 and
with known optimal solution SLopt = 1200.

n ρ SL(CP ) SL(LS) SL(V NS) tmin tmax

200 0 1203 1200 1200 34.43 750.00
200 10 1955 1850 1801 672.01 750.00
200 20 2191 2111 2045 180.50 750.00
200 30 2266 2169 1574 660.43 750.00
200 40 2246 2192 1621 707.49 750.00
200 50 2282 2252 1532 502.69 750.00
200 60 2287 1248 1215 215.51 750.00
200 70 2305 1894 1210 669.56 750.00
200 80 2307 2284 1248 478.36 750.00
200 90 2354 1256 1200 32.33 750.00

av. 45.0 2243.67 1917.33 1494.00 461.58 750.00

% dev. 86.97 59.78 24.5 - -

Looking at the results shown in Table 5 we can conclude that sparse and dense task
graphs are easy for scheduling, while medium density ones (20-60%) present more difficulty.
We can give the following explanation for this fact: For sparse task graphs the initial
solution is very close to the optimal one (T. Davidović and T. G. Crainic (2003)) and
it is not hard for VNS to improve it a little and obtain a good final solution; the initial
solution for dense task graphs is not good, but the search space for VNS (set of feasible
permutations) is small and again, large improvements, yielding to good final solution are
easily obtained. For scheduling task graphs of medium density, VNS starts from an initial
solution which is quite far from the optimal one and moreover, the search space is very
large. Therefore, improvements are not very substantional.

Next, we focus our experiments on medium density task graphs of second type since
they seemed to be “hard” for scheduling and the optimal solutions are known so we could
measure the performance of the heuristic solutions. These task graphs were generated in
such a way that the first feasible permutation in topological order (i.e. 1, 2, . . . , n) is that
one yielding to the optimal solution (see T. Davidović and T. G. Crainic (2003), Y.-K.
Kwok and I. Ahmad (1997)). Usually, this is not the only “optimal” permutation, but we
know that this one certainly is the optimal one. It should be mentioned here that there
are task graphs whose optimal solutions cannot be represented by feasible permutation (in
the case ES scheduling rule is used, T. Davidović (2000)). Our examples were generated in
such a way that a load balance between processors is achieved and no idle time intervals
occur in the optimal solution. All processors complete their execution at the same time
equal to the length of the optimal schedule (SLopt). The communication is supposed to
be intensive between tasks executed on the same processor. The generation algorithm is
described in T. Davidović and T. G. Crainic (2003), Y.-K. Kwok and I. Ahmad (1997).
An example of optimal schedule is given on Figure 7.

Let us now recall the implementation details in order to summarize the types of analysis
that should be performed. In our implementation of heuristics based on LS procedure (TS,
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Figure 7: Structure of the optimal schedule for hard test examples

VNS, MLS) we defined the solution space to be the set of all permutation of tasks. Feasible
solutions are feasible permutations, i.e. tasks orderings that obey precedence relations
between tasks defined by the task graph. Starting from a permutation, the actual solution
(schedule, i.e. the index of processor and the starting time instant for each task) can be
determined by the use of some scheduling rule. We choose Earliest Start (ES) rule since
it has been widely used in the literature. We also tried to use some other scheduling rules
such as Idleness Minimization (IM), Preferred Path Selection, PPS (B. A. Malloy, E. L.
Lloyd, and M. L. Soffa (1994)) and DeClustering, DC (T. Davidović (2000)), but the ES
performed best and in the smallest amount of time as will be discussed later.

After the ES rule is applied, we calculate the objective function value, i.e., schedule
length. Obviously, we have an implicit connection between the solution representation
and the value of the objective function. The advantage of representing the solution as a
feasible permutation is to lead to an efficient neighborhood search, since there are a lot
of neighborhood structures that can be applied (Swap-1, Swap-2, . . . , IntCh,. . . ). The
influence of neighborhood selection is described in Subsection 5.3. The disadvantage of
such a representation is that several different permutations may produce the same schedule
(after applying ES). An illustration of this observation is given on Figure 8.

To generate this figure, we performed a scheduling procedure for all FORWARD Swap-1
neighbors of known optimal solution for the task graph with n = 200 nodes and ρ = 30%.
As a result, we obtained 679 optimal schedules versus 437 non-optimal ones. Just for
the illustration of neighborhood size, let us compare the number of tasks with the total
number of FORWARD Swap-1 neighbors (679+437=1116≈ 5.5× n). Then, we sorted the
so-obtained non-optimal schedules in nondecreasing order, calculated the corresponding
deviations from the optimal solution and represented them graphically on Figure 8. As
can be seen on Figure 8. there are different permutations that produce the same non-
optimal schedule (parts of the graph parallel with the x-axis, not to mention the 679
permutations producing the optimal solution); note also that the worst solution in the
Swap-1 neighborhood has a 90% deviation.
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Figure 8: % deviation from the optimal value in the Swap-1 neighborhood of the known
optimal solution

From this figure we can also conclude that small changes in the solution representation
can produce large deviations in the objective function value. This fact means that we
cannot control the search process strictly since the representation is implicit. But, this
problem exists even if we look at the exact schedule, i.e., if we use the representation
proposed in S.C. Porto and C.C. Ribeiro (1995). For example, let us look at the task
graph presented on Figure 1 and its schedule onto a 2 processor system. The CP-based
schedule (tasks on CP are allocated to one processor, while all others are scheduled to the
second one) is of the length SLCP = 56 computing cycles. If we present the solution using
lists of tasks allocated to each processor, the CP-based solution would be

P1: 1, 2, 4, 6, 9, 10
P2: 3, 7, 5, 8

Let us define a Swap-1 move as moving a task from its original processor to an other
one (all others, if there are more processors), and let us consider all such moves that do
not violate the precedence relation between tasks. For our example, we come out with 26
neighbors, and a solution deviation range from 0.02% to 41.5% from the best solution in
the neighborhood. The deviations could be even larger for the examples with more tasks
and incomplete network of processors because of the communication delays that can appear
with different coefficients (dkl) in the procedure for calculation of the objective function
value. To compare the two representations, we examined the permutation-based one for the
example on Figure 1. Starting from the first topological permutation, 1, 2, 3, . . . , 10, and
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searching the Swap-1 neighborhood in the FORWARD direction, we obtained 7 neighbors
with the deviations from the best one ranging from 1.88 to 3.77%. In the BACKWARD
direction, there are 9 neighbors and maximum deviation is 9.43%. FORWARD search in
Swap-1 neighborhood of the CP-based permutation yields 6 neighbors and a maximum
deviation of 7.55%, while in the BACKWARD direction the maximum deviation among 9
neighbors is 3.77%.

The difficulties that are produced by communication delays and multiprocessor archi-
tecture are illustrated on Figures 9 and 10. Figure 9 contains the same results as those on
Figure 8 but for the case when communication delays are neglected.
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Figure 9: The schedule deviation without communications

We obtained only 237 optimal schedules and 879 non-optimal ones with deviations of
non-optimal solutions from the optimal one represented on Figure 9. First, we conclude
that in the presence of communication delays more optimal neighbors are found since the
tasks are forced to be scheduled in such a way as to avoid expensive communications. Next,
it can be seen that the deviation of the non-optimal schedules from the optimal ones is
much larger for the case with communication delays. If communication is negligible, the
tasks can be packed on processors with less idle time intervals, although optimal schedules
seem to be harder to find.

Next, we examined the case when processors are completely connected, i.e. there exists
direct a communication link between any two processors. That means

dkl =
{

0, k = l,
1, otherwise
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Here, communication time is included. The results of exploration of Swap-1 neighborhood
in this case are given on Figure 10. The results are somewhere in between those of the
two former cases: The number of optimal schedules is 434 versus 682 non-optimal ones,
while the maximum deviation from the optimal solution is 13.83%. The number of optimal
schedules is smaller than in the 2-dimensional hypercube case since ES forces some of the
tasks to start earlier than would be optimum. This decision is guided by the fact that the
distance data have to travel is equal for all transfers. The smaller deviations obtained can
be explained by the fact that, thanks to the reduction in data transfer, tasks are packed
in a better way, but still, the optimal schedule is hard to find.
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Figure 10: The schedule deviation with communications for complete connection between
processors

Here, we were searching the Swap-1 neighborhood in FORWARD direction. The BACK-
WARD search gives us the following results 609 + 430 = 1039 solutions with a maximum
deviation of 89% for scheduling communicating tasks onto a 2-dimensional hypercube (the
first number is for optimal solutions). When scheduling dependent tasks without commu-
nications the number of optimal solutions was 266 versus 773 non-optimal ones and the
maximal deviation of 1.667%, while for the last case we have 429 optimal and 610 non-
optimal solutions and a maximum deviation of 6.08%. This means that the results are
similar to those obtained in the FORWARD search case.

The fact that there is a large number of optimal solutions in the Swap-1 neighborhood
of the known optimal solution, especially for the case we considered initially (incomplete
connection of processors and significant communication delays) may seen strange: so many
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permutations lead to the optimal solution and yet it is so hard to find one by heuristic
search. The number of optimal solutions is 1.5 times larger than the number of non-optimal
ones. Therefore, we examined the neighborhood 2 of the known optimal solution, i.e. the
neighborhood 1 of each neighbor of that solution.

Results obtained are summarized in Table 6. Each value in this table represent the
percentage of optimal solutions for different scheduling cases considered also in neighbor-
hood 1.

Table 6: Percentage of optimal solutions in neighborhood 2 of given optimal solution.
2-hyp. comm. 2-hyp. without comm. complete with comm.

FORWARD 37.13% 4.94% 17.60%
BACKWARD 34.47% 7.34% 17.11%

The conclusions are similar to those drown in the case of the neighborhood 1. The
percentage of optimal solutions decreases, but still, for the most interesting case there
are more than 50% permutations that lead to the optimal solution. Examining further,
neighborhood 3, 4, . . . , for only the 2-hypercube case with communications in FORWARD
directions, we obtained the graph presented on Figure 11 with solid line.
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Figure 11: The percentage of optimal permutations in different neighborhoods of given
optimal solution
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As can be seen from the Figure 11, the optimal solutions are concentrated close to each
other. We also examined IntCh neighborhoods and draw the corresponding graph with
the dotted line on the Figure 11. For the IntCh neighborhood, the conclusion is that the
number of optimal permutations is smaller (as well as the neighborhood size) and they are
located even closer to each other since the difference between two neighbors is larger than
within the Swap-1 neighborhood.

Since the optimal solutions are so close to each other it is obvious that the VNS concen-
trates its search in the regions that are far from those containing these optimal solutions.
In addition, we definitely cannot search the whole space and therefore we do not know if
maybe some other regions contains the group of optimal solutions. Anyway, it is necessary
to diversify the search in order to cover larger parts of the solution space.

In the text to follow, we describe the experiments we performed trying to improve the
solutions obtained by the basic variants of VNS heuristics. We can distinguish different
parameters that can influence the quality of heuristic solution. For example, the search
direction (FORWARD-BACKWARD) can be seen as a parameter, but in most of the
cases the forward search performed better. We also experimented with best and first
improvement search strategies and conclude that first improvement is faster and gives us
better results in average, which confirms the result from P. Hansen and N. Mladenović
(1999)a.

The best initial schedule does not necessarily lead to the best final heuristic solution.
To examine the influence of the initial solution selection on the quality of the minimal
schedule obtained we generated initial solutions by the use of several different strategies
and performed the VNS heuristic for the task graphs with known optimal solutions and
n = 200 within given CPU time. A CP initial solution, which is based on the Critical Path
rule, is used in all previous experiments. Largest Processing Time (LPT) is the order of
tasks obtained when LPT rule is combined with the precedence relation. Directed by the
precedence relation, the task order that forces tasks with the largest number of successors
we call SUCC initial solution. Similarly, the initial solution that we call COMM is obtained
by forcing tasks that require largest amount of communication, i.e., the task priority is
defined by the sum of all communications (with both, predecessors and successors). The
last initial solution we considered was the RND, the randomly generated one. According
to the previous experience, we did not perform as detailed experiments as before. We just
combined best variants of Swap-1 LS with different initial solutions. Since no improvement
(comparing to the CP initial solution) occurred, we do not present results here and pass
to the next step of our analysis, i.e., examination of the influence of the scheduling rule.

As we already mentioned, the number of existing constructive scheduling heuristics is
very large, and, moreover, from most of them, we can extract the scheduling rule and apply
it to the list of tasks defined by a feasible permutation.

In this work we apply several different scheduling rules during the LS procedure of VNS
heuristic. The first of them is Idleness Minimization (IM), guided by the following idea: we
know that there is no idle time intervals in the optimal solution, therefore we decide not to
force the processor at which task will start earlier but the one where minimal (preferably
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none) idle time interval is produced. The second scheduling rule we tried is Preferred
Path Selection, PPS from B. A. Malloy, E. L. Lloyd, and M. L. Soffa (1994), where depth-
first scheduling is performed in such a way that the task from the highest level together
with one whole path through the task graph is associated to the same processor. In the
original heuristic the task selection is strictly defined based on the CP-priorities and the
number of predecessors already associated to the given processor. Here, we adopted this
method to explore task selection based on feasible permutation. The final scheduling rule
we investigate in this paper is DeClustering, DC (T. Davidović (2000)) which was initially
designed to work with feasible permutations. The DC heuristic is based on improvements of
a sequential execution defined by a given permutation. These improvements are obtained
by moving tasks from the first processor to the others as long as the schedule length
decreases.

It appears that the best performing scheduling rule is ES. This does not mean that a
better one cannot be found, but it is beyond the scope of this paper to search for the “best
scheduling rule”.

In the following subsections we investigate the influence of some other search parameters
(maximal number of neighborhoods and the related parameters, neighborhood definitions,
i.e. combinations and restrictions, stopping criterion) on the deviation of the heuristic
solution from the optimal one.

5.1 The influence of kmax, kstep, plateaux

According to the previous analysis, increasing kmax is an elementary way to diversify the
searching process. The results for different values of kmax, constant ones as well as ones
depending upon the number of tasks, are given in Table 7.

Table 7: Scheduling results with different kmax

n ρ kmax = 10 kmax = 20 kmax = 50 = n/4 kmax = n/2 kmax = 3n/4

200 0 1200 1200 1200 1200 1200
200 10 1759 1801 1794 1794 1794
200 20 2045 2045 2045 2045 2045
200 30 1692 1574 2066 2117 2117
200 40 1716 1621 1631 1631 1631
200 50 1656 1532 1271 1271 1271
200 60 1224 1215 1215 1215 1215
200 70 1230 1210 1210 1210 1210
200 80 1248 1248 1248 1248 1248
200 90 1200 1200 1200 1200 1200

av. 45.0 1497.0 1494.00 1488.0 1493.18 1493.18

% dev. 24.75 24.5 24.0 24.43 24.43

From this table, we can conclude that the results do not depend much an the value for
kmax. This is because of the FI philosophy of the VNS heuristic: as soon as the better
solution is found, the search continues in N1. That conclusion can be supported by the fact
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that kmax is reached more than 5 times if it equals 10 and only once (or even not reached at
all) for the values n/4, n/2 and 3n/4. One may try to overcome this problem by introducing
the kstep parameter and consequently, by skipping some neighborhoods during the search,
but then there is a possibility to lose some good solutions in the neighborhoods that are not
visited. Another parameter that could influence the search directions is plateaux, i.e., a
probability to accept a solution with the same scheduling length as the current incumbent to
be the new best solution. As we already noticed, there are different feasible permutations
yielding to schedules with the same length. If we change the current best (with some
probability) we may diversify the search and explore different regions. We experimented
with values kstep = kmax/10, kstep = kmax/5, and plateaux = 0.5, plateaux = 1.0. The
scheduling results for different combination of the three parameters are summarized in the
Table 8.

Table 8: Scheduling results with different combination of kmax, kstep, and plateaux

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

10∗ 24.75 27.31 21.52 28.69 27.76 24.07 25.91 30.36 28.92
20 24.5 30.69 28.89 29.24 35.39 26.24 23.46 30.43 26.08
50 24.0 23.95 20.34 29.32 27.31 23.11 24.07 18.55 18.48

100 24.43 23.29 22.78 29.32 21.27 22.66 24.29 21.92 24.06
150 24.43 19.67 22.59 29.32 19.28 23.27 23.83 22.96 22.13

∗ for this value of kmax, kstep values are 1, kmax/5, and kmax/2.

The results show quite a chaotic behavior of the scheduling process, although usually,
it is better if we skip some neighborhood and explore different regions.

On the other hand, each time the neighborhood k is visited, only one solution generated
by the shaking procedure is explored. In the next subsection experiments with different
shaking procedures (neighborhoods and solution generation process) are described.

5.2 Shaking rule

The second simplest way to assure diversification of the VNS search is to redefine neigh-
borhoods for the shaking procedure. If the IntCh neighborhood is used, the changes in
shaken solutions are larger and may lead to different regions. Moreover, we tried the rules
proposed by K. Fleszar and K. S. Hindi (2001): move all tasks independently from the
chosen one to the left (right), Hl (Hr) shake for short. This means that for the chosen task
only its predecessors (successors) are before (after) it in a feasible permutation.

The shaking procedure of the VNS heuristic of T. Davidović, P. Hansen, and N. Mlade-
nović (2001)b, T. Davidović, P. Hansen, and N. Mladenović (2001)a is realized in two
variants: 1) k-Swap, meaning that k times we pick up a task and change its position in
the feasible permutation and 2) k-IntCh, which consists in k interchanges performed on
the current incumbent solution. Another way to change the shake procedure (P. Hansen
and N. Mladenović (2001)a, P. Hansen and N. Mladenović (2003)) is to introduce a new
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parameter b, to select b random solutions in the neighborhood k, and to choose the best
one (or one of the several bests) to be the new initial solution for the LS procedure. We ex-
perimented with different values for b, and combined these values with the different values
of the other parameters. The results are summarized in Table 9.

Table 9: Scheduling results with different shaking rules
Shake IntCh

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 24.21 25.53 23.33 26.73 29.29 22.67 27.07 24.04 20.74
100 26.12 19.12 31.35 26.73 22.42 23.55 27.06 24.21 22.2
150 26.12 21.44 24.78 26.73 18.68 25.67 27.06 16.66 24.62

Shake Hl

100 23.02 23.84 26.08 26.53 23.70 25.57 27.90 25.68 26.64
150 23.02 31.27 29.14 26.53 31.78 30.72 27.90 31.87 24.32

Shake Hr

100 22.48 26.52 25.51 30.27 25.78 25.4 31.78 26.54 22.80
150 22.48 27.35 25.07 30.27 27.52 25.24 31.78 24.17 25.24

Shake with b = 5

50 33.10 30.54 22.07 24.16 28.76 35.07 34.72 27.34 27.88
100 33.01 25.49 25.49 24.16 19.54 25.99 34.83 18.12 25.69
100 33.01 21.97 28.48 24.16 18.73 26.74 34.83 19.22 24.75

Shake with b = 10

50 37.63 27.51 31.68 36.12 29.86 28.72 38.18 32.52 26.12
100 37.68 27.3 19.88 36.12 29.47 20.37 38.18 25.27 24.62
150 37.68 23.76 24.92 36.12 27.89 24.37 38.18 25.44 21.28

Shake with b = 20

50 27.45 35.52 32.37 29.13 24.46 27.27 27.32 25.00 37.53
100 27.72 22.24 32.93 29.19 28.43 23.67 27.32 21.74 26.18
150 27.86 24.67 23.02 29.65 22.47 23.84 27.17 26.22 19.35

These results show that deviations from the optimal solutions are still large and that
the search cannot be directed by the parameters tested so far.

5.3 Neighborhood definitions

All these obvious methods to change the VNS procedure did not yield significant improve-
ments. The main reason seems to be the large solution space that has to be searched during
the LS procedure. Moreover, each time a new value for the scheduling length (objective
function value) has to be determined. Our first try is to redefine the neighborhood for
the LS procedure by considering the Swap-321, i.e., we apply a Variable Neighborhood
Descent (VND) approach within VNS (in step 2b of VNS we substituted LS with VND).
This neighborhood, although larger than the previous one, may diversify the search to the
regions far from the current incumbent. Since the FI search is applied, we hope to improve
the solution by coarse moves, and then to refine the search in the closest neighborhoods
of the newly found best solution. In Table 10 we summarize the results of VNS-VND
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combination as well as the results obtained by combining VNS-VND with VNS-IntCh and
search in both directions.

Table 10: Scheduling results with different neighborhood combinations
VNS-VND

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

100 28.47 23.82 22.45 25.85 20.77 21.92 28.05 21.07 25.21
150 28.47 21.16 21.46 25.85 16.69 23.37 28.05 17.31 19.75

VNS-VND-IntCh-FB

100 41.00 19.07 21.22 34.56 23.08 23.66 37.57 25.5 24.39
150 38.87 25.43 28.45 34.72 24.91 21.73 36.6 30.38 30.28

VNS-VND-IntCh-FB, BI search

100 34.16 27.60 24.65 31.72 35.10 24.42 32.73 24.64 31.20
150 33.95 26.72 23.12 31.53 27.67 30.45 32.72 29.42 29.57

VNS-VND-IntCh-FB, complete interconnection between processors

100 6.69 7.17 6.87 6.64 7.23 7.16 6.70 6.67 7.16
150 6.75 6.47 7.07 6.64 6.55 7.28 6.70 6.61 7.05

VNS-VND-IntCh-FB, complete connection, neglected communication time

100 0.34 0.52 0.53 0.39 0.53 0.55 0.44 0.54 0.57
150 0.34 0.53 0.61 0.36 0.52 0.51 0.45 0.52 0.53

As can be seen from this table the deviations are still above 20%. Even if the IntCh
neighborhood is introduced and the LS procedure is performed in both directions. Looking
at the output of the search process, we can conclude that this huge solution space cannot
be explored efficiently. The reason lies in the fact that FI search in large neighborhoods
leads to the “random walk” behavior of the search procedure. On the other hand, the
greedy BI search always leads to worse final solution, as can be seen in the third part of
Table 10.

On the contrary, for the simpler cases, i.e. 1) when processors are completely connected
and 2) when communication is neglected the solution deviation is significantly reduced
(last two parts of the Table 10). This is an illustration of the original problem difficulty,
but still, the known optimal solution cannot be reached.

According to the large size of all these neighborhoods, our next step was to restrict
them in some constructive way. The main idea is to force only the “promising” moves.
Therefore, we defined several types of restricted neighborhoods. The first of them is to
move only the tasks allocated to the processor which defines the value of objective function,
i.e. the latest one to complete its execution. We record all the tasks that should be moved
and explore restricted Swap-1 (RPVNS) or Swap-321 (RPVND) neighborhoods in both
directions (neighbor duplications are not too large in this restricted case). The results
presented in the first 6 rows of Table 11, show that the simpler version (RPVNS) performs
better and improves previous results to 16-20% deviations.
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The second idea is to move the predecessors of heavily communicating task. First, we
calculate all the communications that each task requires in a given schedule with both
predecessors and successors and then, mark for moving only the predecessors of the task
with the largest amount of required communications. In other words, in order to prevent
this large number of communication, we try to avoid it by rearranging the task predecessors.
We may choose the successors, but it will not influence the first part of scheduling. On
the other hand, changing the order of predecessors has an impact on the reminding part
of the schedule. Here again, marked tasks are moving in both directions. The results are
presented in the next 3 rows of Table 11 (RCVNS). We also experimented with different
value of parameter b in the shaking procedure (fourth and fifth part of Table 11). As
can be seen from this table the results are still not significantly better. Therefore, we
added another restricted case inspired by the decomposition. The first such restricted
neighborhood is obtained by selecting randomly pj , j = 1, 2, 3, . . . , p processors in each
“step” and select only tasks allocated to these processors. Here “step” means a single
iteration of LS procedure.

The second variant is obtained by random selection of ni, i = 1, 2, 3, . . . , n tasks to be
moved in each step. Scheduling results for these variants are given in the last two groups,
containing 3 rows each, of Table 11 (RVNDS1 and RVNDS2). They both improve the
results of the basic variant of the VNS heuristic, but summing up all the results it turns
out that RCVNS performs best.

5.4 Stopping criterion

For the stopping criterion, we can choose among several options: number of GA iterations,
number of MLS restarts, number of unimproved VNS iterations, time limit. According
to the different character of these heuristics, the only fair criterion is time limit. In the
previous experiments we used a time limit defined by the 600 generations of basic GA.
That seemed to be a fair criterion since the fixed number of permutation is generated and
rescheduled in each generation. If we would use the restarts of MLS instead, the number
of neighborhood visited could be different because of the FI strategy and the number of
LS iteration in each restart which is not constant. To investigate the behavior of VNS we
let its basic variant (VNS, Swap-1, FI, FOR, kmax = n/2, kstep = kmax/10) run until 5
unimproved iterations, i.e. until all neighborhoods (from 1 to kmax) are explored 5 times
without any improvement of the current incumbent. The average resulting CPU time is
14038.64 sec (half of that was unproductive according to the new stopping criterion) and
the average value over 10 examples for obtained SL is 1318.5, which corresponds to a 9.9%
deviation. Within the same CPU time, MLS obtained a deviation of 13.96%, while the
deviation produced by GA and TS were of 33.73% and 34.67% respectively.

The best restricted VNS variant (RCVNS) is faster, and therefore we let it work until
50 unimproved iteration. Then the obtained deviation is 12.28% for 1150.71 sec CPU time
with the total working CPU time equal 4192.62 sec, all in average for 10 examples with 200
tasks. Within previously defined time (14038.64 sec), the result shows 10.45% deviation
obtained for 6513.88 sec average CPU time.
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Table 11: Scheduling results with different restricted neighborhoods
RPVNS

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 15.23 19.85 21.45 17.83 18.82 16.20 16.32 16.93 17.15
100 16.75 19.23 24.87 17.12 17.12 20.53 16.07 16.48 16.06
150 16.87 16.61 19.53 18.20 17.63 21.99 16.95 16.52 21.56

RPVND

plateaux=0.0 plateaux=0.5 plataux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 18.57 23.08 26.57 20.54 23.13 23.12 22.92 24.42 24.41
100 20.46 21.19 26.70 18.92 20.54 24.30 26.47 18.34 23.44
150 25.88 21.39 23.81 20.02 27.10 22.88 27.41 22.03 31.80

RCVNS

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 18.61 17.02 16.63 16.73 16.41 18.79 18.49 16.61 18.65
100 18.47 13.94 17.17 16.84 14.97 16.83 18.11 13.89 16.30
150 18.59 16.43 15.64 16.96 16.96 15.12 18.24 16.84 15.27

RCVNS, shake with b = 5

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 18.36 16.96 18.24 17.96 15.82 15.42 17.59 17.32 16.65
100 16.73 16.14 14.97 17.72 16.41 15.47 15.44 16.22 15.49
150 16.73 16.33 16.77 17.79 16.39 15.04 15.44 16.98 15.77

RCVNS, shake with b = 10

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 17.18 17.38 16.74 16.87 16.89 17.37 17.2 16.7 17.65
100 17.47 16.54 18.32 17.43 16.19 19.00 17.43 16.94 17.39
150 17.33 16.35 13.80 17.46 16.22 13.29 17.43 16.22 14.57

RVNDS1

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 22.20 16.53 16.62 21.56 20.17 23.97 20.55 21.91 21.92
100 21.12 14.02 21.55 22.37 19.58 20.74 23.59 20.63 18.84
150 25.56 24.59 23.49 19.46 22.57 22.89 18.47 24.19 22.32

RVNDS2

plateaux=0.0 plateaux=0.5 plateaux=1.0

kmax \kstep 1 kmax/10 kmax/5 1 kmax/10 kmax/5 1 kmax/10 kmax/5

50 20.09 19.69 33.17 19.57 20.73 23.50 23.67 23.50 23.86
100 21.36 20.15 21.64 22.53 20.66 19.38 15.66 21.91 18.66
150 23.54 18.41 17.12 21.32 20.27 25.34 19.67 21.02 26.46



Les Cahiers du GERAD G–2004–19 29

6 Conclusion

In this paper we developed several heuristic methods for solving Multiprocessor Schedul-
ing Problem with Communication Delays (MSPCD) within the framework of well-known
metaheuristics. All of them are based on a permutation representation of solutions. Here,
we analyzed the performance of this representation as well as the implementation param-
eters of the proposed methods. Some improvements of the basic variants of the heuristics
are proposed based on this analysis in order to direct the search towards known optimal
solutions of benchmark examples. The analysis shows that MSPCD is a very difficult
combinatorial problem. Metaheuristic approaches, that can significantly improve an initial
solution or even that one obtained after the local search (LS) procedure are applied. Still,
for the given set of benchmarks with known optimal solution it is hard to obtain these
solutions with the current implementation of heuristic methods. The reasons are a large
solution space, a large number of “similar” solutions yielding the same objective function
value(plateaux problem), solution symmetry as a consequence of processor numeration
(which cannot be easily broken). Further improvement directions could be parallelization,
possible decomposition of the scheduling problem or different solution representations. A
permutation-based solution representation has many advantages: it is easy to manipulate
and store in computer memory (a solution update requires O(1) computing steps, all the so-
lutions have the same structure), a large number of possible neighborhoods can be defined.
The main disadvantage is indirect connection between solution and value of the objective
function. The problem is that this disadvantage can not be easily overcome by changing
the solution representation since in both cases rescheduling must be performed due to
the change in values for communication delays depending upon the target multiprocessor
architecture.
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