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Summary: We propose a framework for the implementation of Proof-of-Useful-Work (PoUW) Blockchain (BC) Consensus 
Protocol (CP) preserving the main advantages related to improving the energy efficiency of BC systems. The idea in the 
development of this CP was to replace solving cryptographic puzzles by solving instances of some hard real-life combinatorial 
optimization problems. In such a way, the computations that are useful for some participants would be performed during the 
BC system maintenance. We described the components of the proposed CP and the implementation issues that we identified. 
Special attention is paid to the efficient utilization of the various types of resources owned by BC participants, incentives and 
rewarding schemes for BC participants and prevention of various types of fraud. 
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1. Introduction 
 

Unsupervised maintenance of BlockChain (BC) 
systems includes the application of Consensus 
Protocols (CPs) which are the most computation-
intensive parts of BC systems. The main issue related 
to the execution of CPs is that they require a huge 
amount of energy. There exist multiple ways to 
address this issue [5, 11]. We focus on Proof-of-
Useful-Work (PoUW) CPs [1, 2, 4, 8, 10] which were 
envisioned as a way to overcome this problem. PoUW 
assumes that within mining process additional useful 
work is completed for the same number of resources 
(energy) used. In such a way, the computations that are 
useful for wider community, solving instances of some 
hard real-life Combinatorial Optimization (CO) 
problems, would be performed during the BC system 
maintenance. 

The main issue in the implementation of  
PoUW-based CPs is to ensure the usefulness of the 
work performed by the miners without violating the 
security, consistency, reliability, fairness, and 
immutability of the considered BC system [2, 10]. We 
present the PoUW-based CP named Combinatorial 
Optimization-based Consensus Protocol (COCP), in 
which the useful work consists of solving real-life 
instances of various CO problems. In addition, we 
propose some modifications with respect to [2, 10]. 

We discuss the implementation of COCP that 
considers efficient use of energy in BC CP based on 
the PoUW concept because majority of the proposed 
PoUW approaches [1, 2, 4, 8, 10] do not adequately 
consider implementation challenges involved in 
having a functional CP. Studies that do address 
implementation either consider a private BC, or do not 
go into specific details in general case. The main 

implementation issues related to combining BC and 
CO, are security, fairness, sustainability, scalability, 
and consistency of maintaining the whole system. We 
discuss how to resolve them and ensure the benefits of 
the proposed COCP for all BC participants. 

For resolving the security issues, COCP strongly 
relies on hashing, time-stamping, and proper signing 
of each contribution [10]. We investigate what needs 
to be done for COCP to be successfully implemented 
as the tool for maintenance of the BC systems. Even 
though our work is based on COCP we strongly 
believe that other PoUW-based CPs [1, 4, 8] could be 
implemented using the lessons we learned. 

Our main contributions include the extension of 
the identified comprehensive list of challenges [10] 
that should be resolved in order to implement a useful, 
secure, and efficient PoUW consensus protocol, and 
resolution of some of those challenges. The main part 
of this paper is devoted to a detailed COCP description 
and a case study simulation. More precisely, we 
explain the main steps of the COCP, and provide a 
simulation using a part of the real-life BC network to 
illustrate the achieved benefits. Having in mind that 
this is still work in progress, we present the identified 
challenges that are still under consideration. 
The remainder of this paper is organized in the 
following way. The main components of COCP and 
other PoUW-based CPs are described in the next 
section. Section 3 contains the implementation 
challenges that need to be resolved to ensure a secure, 
reliable, fair, and trustful BC system. In addition, case 
study simulation that illustrates the functioning of the 
large-scale BC system maintained by COCP is 
provided. Concluding remarks and directions for 
future work are given in Section 4. 
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2. Main Components of PoUW-based CPs 
 

PoUW-based CP proposed in [2, 10] consists of 
several components (modules) executed by the BC 
participants when they take various roles (Fig. 1). 
Some of these modules are standard for any CP, like 
the submission of transactions (performed by the basic 
users), composing transactions into block (performed 
by miners), and verification of the announced block 
(performed by verifiers). However, some of the 

participants are required to perform the additional 
tasks to enable the completion of useful work, i.e., to 
solve CO problem instances. As it is illustrated in  
Fig. 1, a PoUW-based category of users (clients) are 
needed. These are the customers (organizations, 
companies) that face CO problems in their everyday 
activities. They are willing to offer a reward to miners 
who solve their instances. Their role involves 
submitting instances and retrieving the corresponding 
solutions. 

 
 

 
 

Fig. 1. Activities of BC users in PoUW-based CP. 
 
 

To ensure the balancing of work for miners and in 
such a way provide them with similar chances to 
include a new block into BC system, CO problem 
instances should be grouped into packages containing 
instances of various difficulty [6]. After composing a 
block, miners have to create a package of instances 
that corresponds to that particular block and to solve 
all instances before announcing the block. Creation of 
the package has to be performed in non-biased and 
verifiable way. 

Even if the miner does not succeed in announcing 
the new block, they can provide solutions for some of 
the instances and potentially get rewarded for the 
completed useful work. In such a way, the waste of 
resource can be reduced [2, 10]. 

There are some additional tasks for verifiers. 
Beside validity of the transactions, they need to 

validate the content of the instance package and 
solutions generated by the miner. Moreover, checking 
the validity of solutions not corresponding to the 
announced blocks is another task that should be 
performed by verifiers. 
 
 
3. Implementation Challenges 
 

To implement all the above-mentioned modules in 
a trustful and reliable way, one should strongly rely on 
hashing, time stamping, and proper signing each part 
of provided results [10]. 

The proposed framework of the implementation is 
under development. To avoid implementing the whole 
BC system from scratch, we decided to select an 
existing BC platform and modify the CP, transactions, 
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block headers, and verification procedures. COCP 
requires a platform that supports both standard 
transactions and smart contracts that are necessary for 
distributing rewards (collecting payments from 
customers and rewarding miners that solved the 
required problem and/or created a new block). Smart 
contracts might also be a useful feature in future 
development [3]. This narrows our choice to BC 
platforms that already support smart contracts [7, 9]. 
Considering market cap, existing community size, and 
project maturity, we decided to base the 
implementation of COCP on Ethereum source code. 
However, to be able to complete the implementation, 
it is necessary to resolve several issues: preventing 
various types of fraud, ensuring fair balancing of 
miners' work, defining suitable rewarding schemes, 
etc. Therefore, challenges that are under consideration 
are: Instance submission scheme, Instance package 
creation, Verification of provided instance solutions, 
and Reward transfer schemes. 

To implement a secure Instance submission 
scheme, clients are required to pay an adequate fee to 
obtain high-quality solutions for their CO problem 
instances. However, the reward offered to the miner 
who solved an instance is less than the provided fee. 
In such a way malicious users are discouraged in 
trying to submit instances for which they possibly 
have valid solutions. In addition, we need to ensure the 
adequate, fair and secure transfer of reward from the 
client to the miner for each solved instance. We 
propose two ways to resolve it: Without smart 
contracts and Via a smart contract. 

Without smart contracts. The instance to be solved 
is submitted as a single transaction. The transaction 
has to contain the problem definition (type of problem, 
address of input data, constraints) in the data field. In 
addition to the standard fees, the transaction should 
now include an instance fee. The client sets the 
instance fee proportional to the estimated difficulty of 
the submitted instance [6]. If this fee does not exceed 
the minimal fee required for instance of that difficulty, 
the transaction is considered invalid and will not  
be included. 

Via a smart contract. An instance would be 
submitted by sending the transaction to a special smart 
contract. The consistency of data, especially if the 
value of the fee is larger than the pre-specified 
minimum, is automatically checked by the  
smart contract. 

The miner collects transactions into a block in 
the standard way for the Ethereum protocol. 
Based on the state of the instance pool (containing 
unsolved instances that have been submitted) and the 
structure of the composed block, the difficulty 
estimation algorithm determines which CO problem 
instances are to be solved for announcing that block. 
The hash value of the composed block is used as a seed 
for the random selection of instances from the pool. 
This enables easy verification of the proper 
correspondence between the block structure and the 
content of the instance package. The number of 
instances is pre-specified and adjusted periodically to 

preserve the block mining difficulty. During the 
mining process, the miner solves the given CO 
problem instances in accordance with the specified 
constraints [10]. For the obtained solutions, the hash 
values are computed and added to the block header 
(together with the hash value of input data). The miner 
saves the solutions outside the BC and includes the 
paths (links, addresses) to this data in the block header. 
A block is now successfully mined and can be 
announced for inclusion in the BC. When creating a 
block, the miner can add their own transaction to claim 
the rewards for solved instances. It is the responsibility 
of the block verifiers to check that the transaction 
added by the miner is valid, i.e., that the miner claimed 
rewards only for instances that they have solved. Once 
the block is accepted for the BC, the miner is rewarded 
for both block creation and solving problems. At this 
point the miner will be rewarded for all CO problem 
instances solved during the block creation. 

To verify a block in COCP, besides the verification 
of transactions required by the Ethereum platform, the 
following must also be checked: 

1. If the hash of the data addressed in the 
blockheader corresponds to the valid solutions of CO 
problem instances. This is to verify that there is no 
fraud related to the solution data tampering. More 
precisely, it should be confirmed that the miner has not 
changed data after submitting the block or that some 
other users have not altered data for the miner. 

2. If the miner solved the adequate CO problem 
instances and if the given solutions satisfy the required 
constraints. For the first part, verifier computes the 
hash value of the block and (using it as a seed and 
knowing the state of the instance pool at the time of 
block creation) generates a sequence of random 
numbers to determine the set of instances 
corresponding to the composed block. From the paths 
and hash values stored in the block header, the verifier 
can match CO problem instances and their solutions 
for verification. For completing the second part, 
verifier should execute the evaluation algorithm on 
solution data [8] and compare the obtained results with 
the constraint provided by clients. 

An important issue related to the verification 
concerns the solutions for instances that are solved 
during the mining of blocks that have not been 
included in the BC system. As we already mentioned, 
to reduce the waste of resources, we need to 
acknowledge as many solutions as possible. The 
unsuccessful miner may solve several instances from 
the package and these solutions should be included in 
the competition for rewarding. This could be realized 
in such a way that, for each solved instance, the miner 
creates a transaction containing all data relevant for 
retrieving and verifying its solution. Once the 
transaction is verified as a content of an accepted 
block, the miner could be rewarded for the 
corresponding work. There are several issues that 
should be resolved in this process. The main refers to 
the fact that several miners can provide valid solutions 
for the same instance and claim the reward. Only the 
one that offers the best solution should be rewarded. 
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The second important issue is related to preventing 
malicious users from collecting reward for solutions 
that are obtained in some irregular way, for example, 
that are “stolen” from other users. These issues are still 
unresolved and are under consideration. 

Simulation, which you can find at the following 
link https://github.com/oneskovic/cocp_simulations, 
could potentially help understand some of the resolved 
issues and challenges under consideration. The 
simulator is a simple environment that simulates 
strategies of miners on the platform related to setting 
the difficulty distribution, and to setting the 
appropriate fee for solving the instances. It allows 
scalable testing of the implementation without the 
need to involve any participants. 

Inherent assumptions that allow the testing and 
scalability include the following: I) Each miner 
follows a strategy consisting of 1) Choose the 
acceptable difficulty, 2) Find and solve the instance 
package with that difficulty, 3) Stop when the block 
insertion time expires, 4) Claim the rewards if any  
5) Restart the process from step 2. II) Each miner has 
a perfect knowledge of difficulties. III) Instance fee is 
a function of the difficulties only. IV) The probability 
of miners solving instance packages is proportional to 
their compute power. 

Parameters of the simulation that could be adjusted 
include the number of instances in the instance pool, 
the number of instances in the package, miners’ 
computing power, minimum and maximum difficulty 
that miners will consider solving, and distributions of 
instances’ difficulties (implicitly the instance fees). 

One of the most noticeable findings was that 
distributions of instances’ difficulties and block 
insertion times are the same and that each miner will 
be able to solve instances according to their computing 
power. It is important to note that the distribution of 
block insertion times was not among the parameters of 
our simulation. This finding indicates that, under the 
listed assumptions, we can achieve fair mining and 
control the block insertion time by controlling the 
distribution of difficulty. 

Additional output of the simulation, a pure-
strategy equilibrium that results in a “fair” reward 
distribution is unlikely to exist for large packet sizes. 
Therefore, prompting a further investigation into 
mixed strategies. 
 
 
4. Conclusions 
 

We described the main components of the  
PoUW-based CP framework, identified the main 
challenges that should be resolved prior to its 
implementation. To model user behavior, we 
simulated an artificial BC system. Apart from the 
implementation, our future work should involve the 
extension of the CO problems palette that can be 
treated within the proposed framework. 

 
 

Acknowledgements 
 

This work has been funded by the by the Science 
Fund of Republic of Serbia, under the project 
AI4TrustBC and Serbian Ministry of Science, 
Technological Development and Innovations, 
Agreement No. 451-03-9/2021-14/200029 and 
supported by Penn State Great Valley Big Data Lab. 
 
 
References 
 
[1]. M. Ball, A. Rosen, M. Sabin, P. N. Vasudevan, Proofs 

of Useful Work, IACR Cryptology ePrint Archive, 
https://eprint.iacr.org/2017/203.pdf 

[2]. T. Davidović, M. Todorović, D. Ramljak,  
T. Jakšić-Krüger, L. Matijević, Đ. Jovanović,  
D. Urošević, COCP: Blockchain Proof-of-Useful-
Work Leveraging Real-Life Applications, in 
Proceedings of the International Conference on 
Blockchain Computing and Applications (BCCA’22), 
San Antonio, Texas, USA, 2022, pp. 107-110. 

[3]. T. Davidović, M. Todorović, B. Sharma, D. Ramljak, 
Exploring Arbitrary Real-life Problems in  
Proof-of-Useful-Work: Myth busting? in Proceedings 
of the 5th International Conference on Blockchain 
Computing and Applications (BCCA’23), Kuwait City, 
Kuwait, 2023, accepted. 

[4]. M. Fitzi, A. Kiayias, G. Panagiotakos, A. Russell, 
Ofelimos: Combinatorial Optimization via  
Proof-of-Useful-Work A Provably Secure Blockchain 
Protocol, IACR Cryptology ePrint Archive, 
https://eprint.iacr.org/2021/1379.pdf 

[5]. L. Ismail, H. Materwala, A review of blockchain 
architecture and consensus protocols: Use cases, 
challenges, and solutions, Symmetry, Vol. 11, Issue 10, 
2019, 1198. 

[6]. U. Maleš, D. Ramljak, T. Jakšić-Krüger, T. Davidović, 
D. Ostojić, A. Haridas, Controlling the Difficulty of 
Combinatorial Optimization Problems for Fair  
Proof-of-Useful-Work-based Blockchain Consensus 
Protocol, Symmetry, Vol. 15, Issue 1, 2023, 140. 

[7]. K. Nelaturu, A. Mavridou, E. Stachtiari, A. Veneris,  
A. Laszka, Correct-by-design interacting smart 
contracts and a systematic approach for verifying 
ERC20 and ERC721 contracts with VeriSolid, IEEE 
Transactions on Dependable and Secure Computing, 
Vol. 20, Issue 4, 2022, pp. 3110-3127. 

[8]. N. Shibata, Proof-of-Search: Combining Blockchain 
Consensus Formation with Solving Optimization 
Problems, IEEE Access, Vol. 7, 2019,  
pp. 172994-173006. 

[9]. H. Taherdoost, Smart Contracts in Blockchain 
Technology: A Critical Review, Information, Vol. 14, 
Issue 2, 2023, 117. 

[10]. M. Todorović, L. Matijević, D. Ramljak, T. Davidović, 
D. Urošević, T. Jakšić-Krüger, Đ. Jovanović,  
Proof-of-Useful-Work: Blockchain Mining by Solving 
Real-Life Optimization Problems, Symmetry, Vol. 14, 
Issue 9, 2022, 1831. 

[11]. J. Xu, C. Wang, X. Jia, A survey of blockchain 
consensus protocols, ACM Computing Surveys,  
Vol. 55, Issue 13s, 2023, 278. 

 


