
Blockchain and Cryptocurrency Conference (B2C' 2023), 18-20 October 2023, Corfu, Greece

68

(048)

A Framework for Proof-of-Useful-Work Consensus Protocol

O. Nešković 1, P. Sekešan 1, D. Ramljak 2, B. Sharma 2, M. Todorović 3 and T. Davidović 3
1 University of Belgrade, Faculty of Mathematics, Studentski trg., 16, 11000 Belgrade, Serbia

2 Penn State Great Valley, 30 East Swedesford Rd, 54321, 19355 Malvern, PA, USA
3 Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36,

11000 Belgrade, Serbia
Tel.: + 381112630170, fax: +381112186105

E-mail: tanjad@mi.sanu.ac.rs

Summary: We propose a framework for the implementation of Proof-of-Useful-Work (PoUW) Blockchain (BC) Consensus
Protocol (CP) preserving the main advantages related to improving the energy efficiency of BC systems. The idea in the
development of this CP was to replace solving cryptographic puzzles by solving instances of some hard real-life combinatorial
optimization problems. In such a way, the computations that are useful for some participants would be performed during the
BC system maintenance. We described the components of the proposed CP and the implementation issues that we identified.
Special attention is paid to the efficient utilization of the various types of resources owned by BC participants, incentives and
rewarding schemes for BC participants and prevention of various types of fraud.

Keywords: Blockchain systems, Exploration of resources, Real-life optimization problems, Optimization methods, Rewarding
schemes, Malicious behavior.

1. Introduction

Unsupervised maintenance of BlockChain (BC)
systems includes the application of Consensus
Protocols (CPs) which are the most computation-
intensive parts of BC systems. The main issue related
to the execution of CPs is that they require a huge
amount of energy. There exist multiple ways to
address this issue [5, 11]. We focus on Proof-of-
Useful-Work (PoUW) CPs [1, 2, 4, 8, 10] which were
envisioned as a way to overcome this problem. PoUW
assumes that within mining process additional useful
work is completed for the same number of resources
(energy) used. In such a way, the computations that are
useful for wider community, solving instances of some
hard real-life Combinatorial Optimization (CO)
problems, would be performed during the BC system
maintenance.

The main issue in the implementation of
PoUW-based CPs is to ensure the usefulness of the
work performed by the miners without violating the
security, consistency, reliability, fairness, and
immutability of the considered BC system [2, 10]. We
present the PoUW-based CP named Combinatorial
Optimization-based Consensus Protocol (COCP), in
which the useful work consists of solving real-life
instances of various CO problems. In addition, we
propose some modifications with respect to [2, 10].

We discuss the implementation of COCP that
considers efficient use of energy in BC CP based on
the PoUW concept because majority of the proposed
PoUW approaches [1, 2, 4, 8, 10] do not adequately
consider implementation challenges involved in
having a functional CP. Studies that do address
implementation either consider a private BC, or do not
go into specific details in general case. The main

implementation issues related to combining BC and
CO, are security, fairness, sustainability, scalability,
and consistency of maintaining the whole system. We
discuss how to resolve them and ensure the benefits of
the proposed COCP for all BC participants.

For resolving the security issues, COCP strongly
relies on hashing, time-stamping, and proper signing
of each contribution [10]. We investigate what needs
to be done for COCP to be successfully implemented
as the tool for maintenance of the BC systems. Even
though our work is based on COCP we strongly
believe that other PoUW-based CPs [1, 4, 8] could be
implemented using the lessons we learned.

Our main contributions include the extension of
the identified comprehensive list of challenges [10]
that should be resolved in order to implement a useful,
secure, and efficient PoUW consensus protocol, and
resolution of some of those challenges. The main part
of this paper is devoted to a detailed COCP description
and a case study simulation. More precisely, we
explain the main steps of the COCP, and provide a
simulation using a part of the real-life BC network to
illustrate the achieved benefits. Having in mind that
this is still work in progress, we present the identified
challenges that are still under consideration.
The remainder of this paper is organized in the
following way. The main components of COCP and
other PoUW-based CPs are described in the next
section. Section 3 contains the implementation
challenges that need to be resolved to ensure a secure,
reliable, fair, and trustful BC system. In addition, case
study simulation that illustrates the functioning of the
large-scale BC system maintained by COCP is
provided. Concluding remarks and directions for
future work are given in Section 4.

Blockchain and Cryptocurrency Conference (B2C' 2023), 18-20 October 2023, Corfu, Greece

69

2. Main Components of PoUW-based CPs

PoUW-based CP proposed in [2, 10] consists of
several components (modules) executed by the BC
participants when they take various roles (Fig. 1).
Some of these modules are standard for any CP, like
the submission of transactions (performed by the basic
users), composing transactions into block (performed
by miners), and verification of the announced block
(performed by verifiers). However, some of the

participants are required to perform the additional
tasks to enable the completion of useful work, i.e., to
solve CO problem instances. As it is illustrated in
Fig. 1, a PoUW-based category of users (clients) are
needed. These are the customers (organizations,
companies) that face CO problems in their everyday
activities. They are willing to offer a reward to miners
who solve their instances. Their role involves
submitting instances and retrieving the corresponding
solutions.

Fig. 1. Activities of BC users in PoUW-based CP.

To ensure the balancing of work for miners and in
such a way provide them with similar chances to
include a new block into BC system, CO problem
instances should be grouped into packages containing
instances of various difficulty [6]. After composing a
block, miners have to create a package of instances
that corresponds to that particular block and to solve
all instances before announcing the block. Creation of
the package has to be performed in non-biased and
verifiable way.

Even if the miner does not succeed in announcing
the new block, they can provide solutions for some of
the instances and potentially get rewarded for the
completed useful work. In such a way, the waste of
resource can be reduced [2, 10].

There are some additional tasks for verifiers.
Beside validity of the transactions, they need to

validate the content of the instance package and
solutions generated by the miner. Moreover, checking
the validity of solutions not corresponding to the
announced blocks is another task that should be
performed by verifiers.

3. Implementation Challenges

To implement all the above-mentioned modules in
a trustful and reliable way, one should strongly rely on
hashing, time stamping, and proper signing each part
of provided results [10].

The proposed framework of the implementation is
under development. To avoid implementing the whole
BC system from scratch, we decided to select an
existing BC platform and modify the CP, transactions,

Blockchain and Cryptocurrency Conference (B2C' 2023), 18-20 October 2023, Corfu, Greece

70

block headers, and verification procedures. COCP
requires a platform that supports both standard
transactions and smart contracts that are necessary for
distributing rewards (collecting payments from
customers and rewarding miners that solved the
required problem and/or created a new block). Smart
contracts might also be a useful feature in future
development [3]. This narrows our choice to BC
platforms that already support smart contracts [7, 9].
Considering market cap, existing community size, and
project maturity, we decided to base the
implementation of COCP on Ethereum source code.
However, to be able to complete the implementation,
it is necessary to resolve several issues: preventing
various types of fraud, ensuring fair balancing of
miners' work, defining suitable rewarding schemes,
etc. Therefore, challenges that are under consideration
are: Instance submission scheme, Instance package
creation, Verification of provided instance solutions,
and Reward transfer schemes.

To implement a secure Instance submission
scheme, clients are required to pay an adequate fee to
obtain high-quality solutions for their CO problem
instances. However, the reward offered to the miner
who solved an instance is less than the provided fee.
In such a way malicious users are discouraged in
trying to submit instances for which they possibly
have valid solutions. In addition, we need to ensure the
adequate, fair and secure transfer of reward from the
client to the miner for each solved instance. We
propose two ways to resolve it: Without smart
contracts and Via a smart contract.

Without smart contracts. The instance to be solved
is submitted as a single transaction. The transaction
has to contain the problem definition (type of problem,
address of input data, constraints) in the data field. In
addition to the standard fees, the transaction should
now include an instance fee. The client sets the
instance fee proportional to the estimated difficulty of
the submitted instance [6]. If this fee does not exceed
the minimal fee required for instance of that difficulty,
the transaction is considered invalid and will not
be included.

Via a smart contract. An instance would be
submitted by sending the transaction to a special smart
contract. The consistency of data, especially if the
value of the fee is larger than the pre-specified
minimum, is automatically checked by the
smart contract.

The miner collects transactions into a block in
the standard way for the Ethereum protocol.
Based on the state of the instance pool (containing
unsolved instances that have been submitted) and the
structure of the composed block, the difficulty
estimation algorithm determines which CO problem
instances are to be solved for announcing that block.
The hash value of the composed block is used as a seed
for the random selection of instances from the pool.
This enables easy verification of the proper
correspondence between the block structure and the
content of the instance package. The number of
instances is pre-specified and adjusted periodically to

preserve the block mining difficulty. During the
mining process, the miner solves the given CO
problem instances in accordance with the specified
constraints [10]. For the obtained solutions, the hash
values are computed and added to the block header
(together with the hash value of input data). The miner
saves the solutions outside the BC and includes the
paths (links, addresses) to this data in the block header.
A block is now successfully mined and can be
announced for inclusion in the BC. When creating a
block, the miner can add their own transaction to claim
the rewards for solved instances. It is the responsibility
of the block verifiers to check that the transaction
added by the miner is valid, i.e., that the miner claimed
rewards only for instances that they have solved. Once
the block is accepted for the BC, the miner is rewarded
for both block creation and solving problems. At this
point the miner will be rewarded for all CO problem
instances solved during the block creation.

To verify a block in COCP, besides the verification
of transactions required by the Ethereum platform, the
following must also be checked:

1. If the hash of the data addressed in the
blockheader corresponds to the valid solutions of CO
problem instances. This is to verify that there is no
fraud related to the solution data tampering. More
precisely, it should be confirmed that the miner has not
changed data after submitting the block or that some
other users have not altered data for the miner.

2. If the miner solved the adequate CO problem
instances and if the given solutions satisfy the required
constraints. For the first part, verifier computes the
hash value of the block and (using it as a seed and
knowing the state of the instance pool at the time of
block creation) generates a sequence of random
numbers to determine the set of instances
corresponding to the composed block. From the paths
and hash values stored in the block header, the verifier
can match CO problem instances and their solutions
for verification. For completing the second part,
verifier should execute the evaluation algorithm on
solution data [8] and compare the obtained results with
the constraint provided by clients.

An important issue related to the verification
concerns the solutions for instances that are solved
during the mining of blocks that have not been
included in the BC system. As we already mentioned,
to reduce the waste of resources, we need to
acknowledge as many solutions as possible. The
unsuccessful miner may solve several instances from
the package and these solutions should be included in
the competition for rewarding. This could be realized
in such a way that, for each solved instance, the miner
creates a transaction containing all data relevant for
retrieving and verifying its solution. Once the
transaction is verified as a content of an accepted
block, the miner could be rewarded for the
corresponding work. There are several issues that
should be resolved in this process. The main refers to
the fact that several miners can provide valid solutions
for the same instance and claim the reward. Only the
one that offers the best solution should be rewarded.

Blockchain and Cryptocurrency Conference (B2C' 2023), 18-20 October 2023, Corfu, Greece

71

The second important issue is related to preventing
malicious users from collecting reward for solutions
that are obtained in some irregular way, for example,
that are “stolen” from other users. These issues are still
unresolved and are under consideration.

Simulation, which you can find at the following
link https://github.com/oneskovic/cocp_simulations,
could potentially help understand some of the resolved
issues and challenges under consideration. The
simulator is a simple environment that simulates
strategies of miners on the platform related to setting
the difficulty distribution, and to setting the
appropriate fee for solving the instances. It allows
scalable testing of the implementation without the
need to involve any participants.

Inherent assumptions that allow the testing and
scalability include the following: I) Each miner
follows a strategy consisting of 1) Choose the
acceptable difficulty, 2) Find and solve the instance
package with that difficulty, 3) Stop when the block
insertion time expires, 4) Claim the rewards if any
5) Restart the process from step 2. II) Each miner has
a perfect knowledge of difficulties. III) Instance fee is
a function of the difficulties only. IV) The probability
of miners solving instance packages is proportional to
their compute power.

Parameters of the simulation that could be adjusted
include the number of instances in the instance pool,
the number of instances in the package, miners’
computing power, minimum and maximum difficulty
that miners will consider solving, and distributions of
instances’ difficulties (implicitly the instance fees).

One of the most noticeable findings was that
distributions of instances’ difficulties and block
insertion times are the same and that each miner will
be able to solve instances according to their computing
power. It is important to note that the distribution of
block insertion times was not among the parameters of
our simulation. This finding indicates that, under the
listed assumptions, we can achieve fair mining and
control the block insertion time by controlling the
distribution of difficulty.

Additional output of the simulation, a pure-
strategy equilibrium that results in a “fair” reward
distribution is unlikely to exist for large packet sizes.
Therefore, prompting a further investigation into
mixed strategies.

4. Conclusions

We described the main components of the
PoUW-based CP framework, identified the main
challenges that should be resolved prior to its
implementation. To model user behavior, we
simulated an artificial BC system. Apart from the
implementation, our future work should involve the
extension of the CO problems palette that can be
treated within the proposed framework.

Acknowledgements

This work has been funded by the by the Science
Fund of Republic of Serbia, under the project
AI4TrustBC and Serbian Ministry of Science,
Technological Development and Innovations,
Agreement No. 451-03-9/2021-14/200029 and
supported by Penn State Great Valley Big Data Lab.

References

[1]. M. Ball, A. Rosen, M. Sabin, P. N. Vasudevan, Proofs

of Useful Work, IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2017/203.pdf

[2]. T. Davidović, M. Todorović, D. Ramljak,
T. Jakšić-Krüger, L. Matijević, Đ. Jovanović,
D. Urošević, COCP: Blockchain Proof-of-Useful-
Work Leveraging Real-Life Applications, in
Proceedings of the International Conference on
Blockchain Computing and Applications (BCCA’22),
San Antonio, Texas, USA, 2022, pp. 107-110.

[3]. T. Davidović, M. Todorović, B. Sharma, D. Ramljak,
Exploring Arbitrary Real-life Problems in
Proof-of-Useful-Work: Myth busting? in Proceedings
of the 5th International Conference on Blockchain
Computing and Applications (BCCA’23), Kuwait City,
Kuwait, 2023, accepted.

[4]. M. Fitzi, A. Kiayias, G. Panagiotakos, A. Russell,
Ofelimos: Combinatorial Optimization via
Proof-of-Useful-Work A Provably Secure Blockchain
Protocol, IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2021/1379.pdf

[5]. L. Ismail, H. Materwala, A review of blockchain
architecture and consensus protocols: Use cases,
challenges, and solutions, Symmetry, Vol. 11, Issue 10,
2019, 1198.

[6]. U. Maleš, D. Ramljak, T. Jakšić-Krüger, T. Davidović,
D. Ostojić, A. Haridas, Controlling the Difficulty of
Combinatorial Optimization Problems for Fair
Proof-of-Useful-Work-based Blockchain Consensus
Protocol, Symmetry, Vol. 15, Issue 1, 2023, 140.

[7]. K. Nelaturu, A. Mavridou, E. Stachtiari, A. Veneris,
A. Laszka, Correct-by-design interacting smart
contracts and a systematic approach for verifying
ERC20 and ERC721 contracts with VeriSolid, IEEE
Transactions on Dependable and Secure Computing,
Vol. 20, Issue 4, 2022, pp. 3110-3127.

[8]. N. Shibata, Proof-of-Search: Combining Blockchain
Consensus Formation with Solving Optimization
Problems, IEEE Access, Vol. 7, 2019,
pp. 172994-173006.

[9]. H. Taherdoost, Smart Contracts in Blockchain
Technology: A Critical Review, Information, Vol. 14,
Issue 2, 2023, 117.

[10]. M. Todorović, L. Matijević, D. Ramljak, T. Davidović,
D. Urošević, T. Jakšić-Krüger, Đ. Jovanović,
Proof-of-Useful-Work: Blockchain Mining by Solving
Real-Life Optimization Problems, Symmetry, Vol. 14,
Issue 9, 2022, 1831.

[11]. J. Xu, C. Wang, X. Jia, A survey of blockchain
consensus protocols, ACM Computing Surveys,
Vol. 55, Issue 13s, 2023, 278.

