
COCP: Blockchain Proof-of-Useful-Work
Leveraging Real-Life Applications

Tatjana Davidović*, Milan Todorović*, Dušan Ramljak+, Tatjana Jakšić Krüger*, Luka Matijević*, Djordje Jovanović*,
Dragan Urošević*

*Mathematical Institute, SASA
Belgrade, Serbia

E-mail: tanjad@mi.sanu.ac.rs, mtodorovic@mi.sanu.ac.rs, tatjana@mi.sanu.ac.rs, luka@mi.sanu.ac.rs,
giorgaki.jovanovic@gmail.com, draganu@mi.sanu.ac.rs

+Penn State Great Valley, The Pennsylvania State University
Malvern, PA, USA

E-mail: dusan@psu.edu

Abstract—We propose Combinatorial Optimization based Con-
sensus Protocol (COCP) that considers efficient use of energy in
Blockchain (BC) consensus protocol based on Proof-of-Useful-
Work (PoUW) concept. Instead of classical cryptographic puzle,
it involves dealing with hard real-life combinatorial optimization
(CO) problems submitted by BC participants called customers.

Two sources of rewards are provided for miners, one related
to adding a new block and the other for solving an instance
of CO problem. The main issues that arise when combining
BC and CO, are security and consistency of maintaining the
whole system. We discuss how to resolve them and what are
the benefits of the proposed COCP for all BC participants.
Our proposed doubly-rewarding scheme and efficiency in energy
exploration are illustrated on a small example from the Ethereum
BC network.

Index Terms—Distributed databases, autonomous systems, effi-
cient consensus protocols, combinatorial optimization, heuristics

I. INTRODUCTION AND LITERATURE REVIEW

Blockchain (BC) is a highly energy intensive system, due to
the large computing overhead used for its autonomous main-
tenance, i.e., for the execution of Proof-of-Work (PoW)-based
consensus protocol [1], [2], [14]. We are addressing different
ways to utilize available resources by solving instances of hard
real-life Combinatorial Optimization (CO) problems during
the execution of consensus protocol.

In the literature, the corresponding consensus protocols are
known as Proof-of-Useful-Work (PoUW) [1], [3]–[9], [12],
[13] and they provide incentives and advantages for all BC
participants.

Various PoUW approaches are proposed, and majority of
them involve solving hard CO problems [1], [4], [5], [12]
or Artificial Neural Network (ANN) training [3], [7]. These

Serbian Ministry of Education, Science and Technological Development,
Agreement No. 451-03-9/2021-14/200029; Science Fund of Republic of Ser-
bia, under the project ”Advanced Artificial Intelligence Techniques for Anal-
ysis and Design of System Components Based on Trustworthy BlockChain
Technology (AI4TrustBC)”; Penn State Great Valley Big Data Lab.

ideas are promising as they ensure employing the resources
for some useful computations and provide two sources of
reward for miners: the basic one related to the insertion
of new block into BC and the other one coming from the
customers whose problem instances are solved within PoUW.
The main problem is that most of the papers only present
the ideas, discuss their advantages, and describe some eval-
uations, mostly on a conceptual level. Only a few of them
[1], [4], [12] present detailed description of PoUW based
BC systems providing some information on implementation
and/or experimental evaluation. In [1] PoUW was based on
solving CO problems represented by polynomials and treated
as Orthogonal Vectors. Consensus protocol in [12] requires
users to submit the algorithms for solving their problems,
which is unrealistic. The users that have such algorithms would
solve the problems themselves, probably outside BC network.
DPLS generic algorithm is suggested to solve CO problems in
[4], however, generic solvers might work inefficient for some
problems.

To overcome these limitations we propose our Combinato-
rial Optimization based Consensus Protocol (COCP) approach
that involves possibility to submit arbitrary CO problem in-
stance for which solution methodology is provided within BC
network.

In order to correctly implement PoUW-based BC system,
several issues should be resolved:

1) The format for stating problem instances
2) Correspondence between problem instance and the com-

posed block
3) Large enough number of instances to make this corre-

spondence meaningful
4) Controlling the hardness of problem instances
5) The efficient exploration of dedicated hardware already

owned by miners
6) Security issues in managing data

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

978-1-6654-9958-3/22/$31.00 ©2022 IEEE

When developing our COCP, we consider listed issues and
explain them in more details in this paper using an illustrative
example. Our example is based on the Ethereum BC network
(https://ethereum.org/en/). Ethereum is a decentralized, open-
source blockchain with smart contract functionality, where
anyone can join, participate in its functioning, and leave at
any time. Ethereum implementation is transparent and open
source, and thus represents a great potential to explain our
implementation.

In the remainder of this paper, we explain how to deal with
the above mentioned issues section (II), show more details
through our illustrative example (section III) and provide
concluding remarks (section IV).

II. METHODOLOGY

The COCP implementation requires modification of the
usual BC environment. First, along with basic users, miners
and verifiers, we introduce a new category of participants
named customers. They are usually companies or individuals
dealing with hard instances of real-life CO problems and
willing to pay for obtaining high quality solutions. Customers
could play any other role, especially the role of basic users,
as their payments could could be performed via regular
transactions in the proposed BC system. Next, an instance pool
containing CO problem instances should be introduced and a
format for submitting instances has to be defined. Contrary to
other papers from the literature, we allow customers to submit
instances of different CO problems and provide proper user
interface as well as different solution methods. BC can be
considered as a live system to which we can easily append
new modules related to defining and solving different types or
variants of CO problems. Submitted CO problem instances that
are stored in the instance pool are considered active and should
be selected by miners who compose blocks to be added to BC
network. When an instance is solved and solution provided
to the customer, it is removed from the instance pool and,
together with the solution, stored in instance archive.

In the classical PoW consensus protocol, each block has to
store the hash value of its predecessor to keep the consistency.
To prove that they invest some work before adding new blocks,
miners need to solve the cryptographic puzzles, i.e., to find
the appropriate nonce value that, combined with block header,
results in block hash value smaller the a given threshold.
COCP aims at performing some useful work instead of solving
cryptographic puzzles, and therefore, we need to re-define the
proof of the invested work. To be allowed to add a block to
BC, a miner has to solve an instance of real-life CO problem
submitted by one of the customers. We need to establish
the correspondence between the composed block and an CO
problem instance so that verifiers can easily check not only if
the selected transaction are valid but also if the proper instance
is solved by miner. As the content of instance pool in each time
point is common knowledge of all BC participants, we defined
the connection between block and instance as the results of
modulo operation applied to block hash value and number of
instances in the pool.

COCP has to be supplied with large enough number of
CO instances such that different blocks always correspond to
different CO instance. However, if at some point there are no
CO problem instances in the pool, miners could be provided
classical cryptographic puzzles that should mimic instances of
CO problems.

To keep the frequency block of insertion, it is necessary to
control the hardness of CO problem instances. Some of the
instances may solved very efficiently, however, for customers
it is important to obtain their solutions. On the other hand,
some CO problem instances may be very hard to be solved
efficiently and miners that are dealing with them may have
difficulty to add new blocks. However, in COCP it is not
necessary to always obtain optimal solution for the considered
instance. In the input data the customers provide solution
threshold, i.e., the bound on the desired objective function
value. As soon as a solution with the objective function that
meets the given threshold is found, the miner can publish the
corresponding block. If the time required to obtain the desired
quality solution is too long, it is possible to ask the customer
to adjust the threshold value or to enable that solution process
continues from the current search state next time the same
instance is selected.

Dealing with the selected CO problem may require special
resources, both hardware and software. Obtaining adequate
software should be easier for a miner because there exist
efficient codes for a lot of optimization methods. On the
other hand, some of these software packages require hardware
resources that are not usually owned by a typical miner. In
the literature usually it is suggested to use hybrid approach:
miners can choose between the classical PoW and PoUW
consensus protocol depending on their preference and the
available hardware resources. However, by doubly rewarding
scheme, miners are motivated to select and solve CO problem
instances from the pool. We also consider the development
of optimization algorithms that would engage the hardware
already owned by miners.

Regarding BC data security issues, we considered prevent-
ing of various malicious behavior related to tampering with
input data and solution data of CO problem instance. Both
data types could be very large, and thus, are not included in
the BC network directly, as parts of blocks. Instead, they are
kept outside BC, in some public locations accessible to all
participants. The location address of input data is provided
when submitting instance, via special type of transactions or
smart contracts. Data related to valid solution, miner stores in
the private location, predefined and known to all participants.
A pointer to the transaction or smart contract that corresponds
to the solved CO problem instance, miners includes in the
block’s header making it easy for all participants to access
the input data. Storing a hash value of the problem data in
the block’s header can prevent malicious users who may try
to change the input data of CO problem instance, and thus
introduce the confusion between instance and its solution. In
such a way any change can be detected by comparing this
hash value with the one calculated from the file defined by

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

the location address.
The second COCP security issue that we consider is prevent-

ing miners to perform selfish mining and other types of known
frauds [10], [11]. For example, a miner, pretending to be a
customer, submits the already solved CO problem instance
and tries to compose a block of transaction corresponding to
that instance. To discourage this, we ensure that large enough
number of CO problem instances is always provided. With
increasing the number of instances in the pool, the effort
needed to compose the block that corresponds to any particular
instance is as hard as the effort required for actual solution
process.

Another type of fraud that we are preventing is miner’s
attempt to announce a new block before obtaining a valid
solution and then continue solutions process with the hope to
find the solution before the verifiers approve the block. Before
publishing the composed block, miner has to store both the
hash value of the instance input data and of the solution in
block’s header.

In the process of block verification, the verifiers access
the instance data via the Corresponding location from block’s
header and the solution from the miner’s private location. Ver-
ification consists of calculating hash values of input data and
of the solution and comparing them with the corresponding
hash values stored in the block’s header. If any pair of hashes
does not contain the same values, we can detect malicious
behaviour and discard the composed block because the BC
security is broken.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To illustrate our proposed COCP, we performed simulation
of adding new blocks on a small example containing 4 blocks
(B1, B2, B3, B4) from the publicly available Ethereum’s test
network Ropsten. Here, we skip many details about the
implementation of the corresponding BC system, and focus
only on the parts related to COCP.

Let the instance pool contain 10 CO problem instances:
i0, i1, . . . , i9. As we already mentioned, we defined the con-
nection between block and instance as the results of modulo
operation applied to block hash value and number of instances
in the pool. It is a bit-wise xor operation on problem instance
hash and solution hash values. To simplify, in this example
we put the hash value of the instance input data file name in
the nonce field. We needed to specify both these values in
order to calculate the hash value of the complete block, as it
represents the connection between blocks in BC network and
is stored in the header of the next added block.

Mining steps are performed by 5 miners on Ubuntu 20.04,
Intel Core i7-10750H CPU @ 2.60 GHz, 32 GB RAM and
NVIDIA GeForce RTX 2060 with 6 GB GPU memory. Mining
software is based on the latest version of standard Ethereum
Go client1 and uses the Ethereum’s PoW algorithm hash
function keccak256.

1Go Ethereum: Official Go implementation of the Ethereum protocol
(https://geth.ethereum.org/

Although at some steps we assumed that different miners
are creating different blocks, our goal was to propagate the
current block from the example to illustrate direct, as well as
side effect benefits of using our COCP PoUW-based consensus
protocol. Moreover, in this simulation the time stamp and
miner identification fields were not changed because they do
not have significant impact on the simulation results.

Fig. 1. Adding B1, successful miner is marked with exclamation point

The first block insertion in the considered BC system
is illustrated in Fig. 1. We need the generic block B0 to
provide the previous block hash value for B1. Assuming the
simplest scenario, all miners compose their blocks and select
the corresponding instances for solving (as it is indicated by
the various geometric shapes in Fig. 1). Miner M3 was the
fastest in providing the valid solution (the one that satisfies
the given threshold) for instance i6 and is allowed to add B1
to BC and to gain the total reward (for inserting block and
solving the instance).

For the second block insertion, again all miners composed
their blocks and selected the corresponding instances. How-
ever, now scenario is that miners M2 and M5 found valid
solutions almost at the same time. As only one block can be
added to BC, let verifiers decide on M2 who composed block
B2 and solved instance i2. This miner is doubly rewarded: for
adding a block and solving an instance. Miner M5 is rewarded
only for providing solution for instance i9.

Before considering B3, there are 7 instances in the pool,
and we assume that miners composed their blocks and, con-
sequently, selected five different instances (i0, i1, i3, i5, i7)
for solving (see Fig. 2). Different geometric shapes denote
correspondence between miners and instances. Miners M2,
M4, and M5 solved their instances almost at the same time,

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

and all three of them are trying to add their blocks and
announce the corresponding solutions to customers. This will
generate a fork in BC presented at the upper part of Fig. 2.
Although (after the synchronization step) only B3 (composed
by miner M4) will remain in BC (lower part of Fig. 2), three
problem instances will be removed from the pool and their
solutions provided to the customers. Miner M4 is rewarded
for both tasks (adding a block and solving instance), while
M2 and M5 get reward only for finding the solutions of the
corresponding instances.

Fig. 2. Adding B3 and B4, question marks indicate need for synchronization

Having removed these 3 instances from the pool, 4 instances
remain before B4 is to be added. We assumed that M5 added
it upon solving instance i0.

From the performed simulation, one can clearly see the
benefits of our approach: in addition to inserting 4 blocks into
the BC network, 7 instances of various CO problems have been
solved. This means that the outcomes of the utilised resources
(consumed energy) are twofold, not only the new blocks are
added, but also some useful work is performed.

IV. CONCLUSIONS

We presented the details of our Combinatorial Optimization
based Consensus Protocol (COCP). The main advantages of
the envisioned consensus protocol are efficient utilization of
computing resources and various sources of rewards for par-
ticipants. The new type of BC users, customers are introduced
to supply COCP with CO problem instances. Solving real-life
instances of Combinatorial Optimization (CO) problems while
attempting to include block into BC helps both customers
and miners. In COCP miners are rewarded for adding block
and/or solving instances, while customers are rewarded by
obtaining solutions of their instances. Inclusion of each block
is performed according to one of the possible scenarios that

can occur during the block mining process. Using a small
example consisting of 4 blocks from the publicly available
Ethereum’s Ropsten network we illustrated the benefits of our
protocol.

COCP relies on the implementations of the underlying
concept of consensus protocol like Proof-of-Useful work for
majority of the details. Possible directions for future work may
include detailed implementation of all components of COCP
along with identifying and resolving issues that may arise.
It is also important to identify and resolve all security chal-
lenges that come with solving real-life CO problem instances,
introducing new type of participants, and providing various
incentives for them. Limitations of our work lie in increasing
computational efficiency and solving the latency issue. That
is another important research avenue that could be followed
through introduction of distributed computing as a tool. It leads
us to the pool of miners concept: several miners join resources
and divide the required computations/corresponding reward.

REFERENCES

[1] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan,
“Proofs of useful work,” IACR Cryptology ePrint Archive
(https://eprint.iacr.org/2017/203.pdf), 2017, last update 2021.

[2] S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, “A survey
of blockchain consensus algorithms performance evaluation criteria,”
Expert Systems with Applications, pp. 113 385:1–21, 2020.

[3] C. Chenli, B. Li, Y. Shi, and T. Jung, “Energy-recycling blockchain
with proof-of-deep-learning,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE, 2019, pp. 19–23.

[4] M. Fitzi, A. Kiayias, G. Panagiotakos, and A. Russell, “Ofe-
limos: Combinatorial optimization via proof-of-useful-work\a prov-
ably secure blockchain protocol,” IACR Cryptology ePrint Archive
(https://eprint.iacr.org/2021/1379.pdf), 2021.

[5] M. Haouari, M. Mhiri, M. El-Masri, and K. Al-Yafi, “A novel proof
of useful work for a blockchain storing transportation transactions,”
Information Processing & Management, vol. 59, no. 1, p. 102749, 2022.

[6] B. Li, C. Chenli, X. Xu, T. Jung, and Y. Shi, “Exploiting computation
power of blockchain for biomedical image segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 2802–2811.

[7] B. Li, C. Chenli, X. Xu, Y. Shi, and T. Jung, “Dlbc: A deep learning-
based consensus in blockchains for deep learning services,” arXiv
preprint arXiv:1904.07349v2, 2020.

[8] A. Lihu, J. Du, I. Barjaktarevic, P. Gerzanics, and M. Harvilla, “A
proof of useful work for artificial intelligence on the blockchain,” arXiv
preprint arXiv:2001.09244, 2020.

[9] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in iot: A blockchain-assisted collective q-
learning approach,” IEEE Internet of Things Journal, 2020.

[10] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, D. Nyang, and
A. Mohaisen, “Overview of attack surfaces in blockchain,” Blockchain
for distributed systems security, pp. 51–66, 2019.

[11] S. Shalini and H. Santhi, “A survey on various attacks in bitcoin and
cryptocurrency,” in 2019 International Conference on Communication
and Signal Processing (ICCSP). IEEE, 2019, pp. 0220–0224.

[12] N. Shibata, “Proof-of-search: combining blockchain consensus forma-
tion with solving optimization problems,” IEEE Access, vol. 7, pp.
172 994–173 006, 2019.

[13] W. A. Syafruddin, S. Dadkhah, and M. Köppen, “Blockchain scheme
based on evolutionary proof of work,” in 2019 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2019, pp. 771–776.

[14] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
IEEE international congress on big data (BigData congress). IEEE,
2017, pp. 557–564.

2022 Fourth International Conference on Blockchain Computing and Applications (BCCA)

