Exploring Arbitrary Real-life Problems in
Proof-of-Useful-Work: Myth busting?

2" Milan Todorovié¢
Mathematical Institute
SASA
Belgrade, Serbia
mtodorovic @mi.sanu.ac.rs

1% Tatjana Davidovic
Mathematical Institute
SASA
Belgrade, Serbia
tanjad @mi.sanu.ac.rs

Abstract—Proof-of-Useful-Work (PoUW) consensus protocols
(CPs) are commonly used to improve the Blockchain (BC)
efficiency and security. Numerous papers propose various PoUW
concepts, majority of them being based on solving the hard
real-life optimization problems. A recently proposed Combinato-
rial Optimization Consensus Protocol (COCP), tried to address
exploration of an arbitrary real-life combinatorial optimization
problem. Although the ideas are quite straightforward, the actual
implementation of such a BC system is still challenging. In this
paper we reflect upon the main components of PoUW-based BC
system with an emphasis on implementation challenges that arise
from the necessity to define and solve an arbitrary real-life CO
problem with the appropriate CO algorithm.

Index Terms—Blockchain systems, energy savings, optimiza-
tion problems, solution methods, rewarding schemes

I. INTRODUCTION

Consensus protocols (CPs) are used within unsupervised
maintenance of BlockChain (BC) systems [30]. They are often
considered as a very high computation-intensive part of BC
systems as they require considerable amount of energy to com-
plete all the tasks needed for this autonomous maintenance.
Proof-of-Useful-Work (PoUW) CPs [1], [2], [4], [7], [8],
[11]-[15], [17], [20], [24]-[27] were developed to ensure the
efficient exploration of available resources, including energy.
As in any other CP, the main issues of PoUW-based CPs
are to provide security, consistency, reliability, fairness, and
immutability of the considered BC system. Those issues are
inherently resolved within Proof-of-Work (PoW) based CPs.
PoUW-based CPs should be built in such a way to preserve
good characteristics of PoW-based CPs and improve upon its
downfalls.

There are other CPs that aim to provide solutions for PoW
downfalls [9], [28]. The most successful one is Proof-of-
Stake [10] (PoS), which was adopted by Ethereum in 2022 [6].
However, for successful adoption of PoS, to become a stake-
holder, user needs to have a valuable stake and an established
trustful relationship with other users. It is important to note
that even then, malicious activities might occur. For example,
the highest stake in the context of the considered BC system
may constitute only a negligible part of stakeholders’ actual

Serbian Ministry of Science, Technological Development, and Innovations,
Agreement No. 451-03-47/2023-01/200029; Science Fund of Republic of
Serbia, project AI4TrustBC; Penn State Great Valley Big Data Lab.

3™ Bharat Sharma
Penn State Great Valley
The Pennsylvania State University The Pennsylvania State University
Malvern, PA, USA
bgs5791 @psu.edu

4™ Dusan Ramljak
Penn State Great Valley

Malvern, PA, USA
dusan@psu.edu

wealth. Thus, those stakeholders might use their invested stake
to impose their malicious agenda, and effectively centralize the
BC system [18].

We focus on PoUW for which we highly value its advan-
tages. Main advantage of PoUW is that, instead of crypto-
graphic puzzles, miners perform tasks useful to wider com-
munity. Useful work considered in the majority of PoUW-
related papers can involve Machine Learning (ML) or Artifi-
cial Intelligence (AI) model training [1], [4], [11], [12], [14],
[20] or solving the instances of some real-life Combinatorial
Optimization (CO) problems, such as Traveling Salesman
Problem (TSP) [13], [15], [25] and maritime and hinterland
supply chain related transportation [8], [17]. The latter two
papers actually propose the self-sustained BC systems, i.e.,
the BC systems are intended for transportation purposes and
their CPs consider CO problems from the same domain. This
holds also for the [21], where useful-work is dedicated to assist
the BC management system in identifying malicious BC users.
Theoretical model for parameter configuration to minimize the
probability of fork occurrences and to increase the throughput
of the whole BC system is studied in [29]. However, this study
does not consider the details related to maintenance of useful-
work tasks within CP.

Some attempts to widen a spectrum of CO problems avail-
able as the useful work in PoUW-based BC systems could
be found in [2], [7], [24], [26], [27]. However, to the best of
our knowledge there is no work that addresses implementation
challenges related to solving arbitrary real-life CO problem. In
particular, challenges like who will define CO problem, what
needs to be transformed, calculated or provided, how to find a
corresponding solver, how to verify a solution for an arbitrary
real-life problem, etc.

Our main focus is to fill that void. PoUW-based Combi-
natorial Optimization Consensus Protocol (COCP) [5], [26]
started considering the generality of usefulness. Useful work
in COCP consists of solving instances of any real-life CO
problem as long as instances are well defined and the adequate
solution method is available within BC system. For numerous
CO problem instances efficient solution methods have already
been developed, most of them being available to the wider
communities. However, as the number of possible problems
and their variants are countless, a new CO problem or a

Miners solve instances in
exchange for reward:

h:
Miners Gompose blocks
combining iransactions

Basic Users Miners :

Customers.

2K |- g e P =) e
@ (candidate for insertion into pool|
() Controling Diffcuty
heir tranactions to
| b sdisdinio Proposed Proposed s
blockehain New Block | | | NewBlock | | | New Block b ew
R Pl Pl P block to be added to
blockehain
1574 @ 174 Instance Pool
Siack Siock Siock
Raward Raward Revard
Transaction Pool : :
TSP SCH1 TSP2 MAX-SAT1
Transaction Transacion
Instance | {In ca [instancel
Reward | |Reward| |Reward| |Reward
ove
blocks and select one
o be added to the
blockchain
Verifiers [l W5t Bis)
W g g correspr utions are
added to the instance archive
. Blockchain
Instance Archieve
‘ ‘ ‘ TsP_1sow” | [TsP_2sow” SCH_1 Solu”
J

Fig. 1. Structure of PoUW-Based Consensus Protocol

new variant of some existing one can appear with very high
probability. Additionally, a framework to group instances into
tasks of similar difficulty is developed in [16]. Its role is to
ensure the fairness for miners in any PoUW-based CP. These
works represent a good basis for achieving the objectives that
we set up front and we build our framework and considerations
upon them.

Our main contributions include considering how to extend
the PoUW-based BC system in such a way to enable the
inclusion of arbitrary new CO problems and corresponding
solution methods. The main challenges that we identify are to
insure that instances are well defined, appropriate optimization
algorithms are available, and fairness is achieved.

The paper is organized as follows. After introducing the
problem and motivating the solution framework, we recall
the main components of PoUW-based CP, emphasizing COCP
that allows dealing with different CO problems in Section II.
Section III contains structural changes and additions that are
needed in PoUW-based CP components to address any real-
life CO problem. Main implementation challenges related to
the inclusion of a new problem and a new solution method
are identified in Section IV. Finally, Section V is devoted to
the concluding remarks and directions for future work.

II. THE STRUCTURE OF POUW-BASED CONSENSUS
PRrROTOCOL

Three main components of standard CPs in BC systems:
Transaction submission, block mining, and block verification,
along with additional components needed for PoOUW-based CP
are shown in Figure 1 and we explain them in the remainder
of this section.

Transaction submission module is usually related to either
data exchange or smart contracts. Each transaction is char-
acterized mainly by its origin (sender), destination (receiver),
signature of the sender, value to be sent and/or code realizing
smart contract, and transaction fee that represents miner’s
reward. All submitted transactions enter the transaction pool
waiting to be included in one of the forthcoming blocks.

At the beginning of block mining process, each miner
selects a set of transactions from the transaction pool and
composes a block to be possibly included into the BC. To
increase their reward, miners usually select transactions in a
greedy manner. In the next step of block mining, the miner
executes CP tasks, which have to testify about the effort
invested in the mining process. Usually, a huge amount of
computational power or some other resource is required to
complete tasks constituting the CP.

For each announced block, a verification has to be per-
formed. The validity of all transactions, as well as the cor-
rectness of the CP procedure, are examined by the verifiers.
Upon verification, the block is either approved or prohibited
for insertion. To be inserted in the BC, block needs to be
approved by some predefined number of verifiers and this
is referred to as the agreement (consensus). If the block is
approved, the corresponding miner is rewarded accordingly.
The blocks that are prohibited or that are not verified by the
required number of verifiers are discarded and all transactions
(if not included in the approved block) are to be returned to
the transaction pool.

These three modules are performed in an asynchronous and
concurrent way by the BC participants when they take the
corresponding roles. They are sufficient to ensure autonomous
maintenance of the classical BC systems. However, the main

issue in these BC systems is the enormous usage of resources,
especially the electrical energy, for tasks that have no value
other than providing autonomous BC maintenance.

When PoUW concept is applied, it is necessary to add two
more modules: module for submission of problem instances
to be solved as useful work during the mining process and
module for retrieval of the corresponding solutions. It is also
necessary to add a new type of users, customers, who provide
instances of problems they are interested in being solved.
In addition, a set of algorithms for solving the submitted
problems has to be provided. We briefly describe the two
PoUW modules here.

The module for submission of problem instances into the
instance pool takes as input a description of instances that
includes all relevant data, as well as the appropriate solution
algorithm. Each instance should be described by the following
features: Identification of the user who submits it; a valid
address for input data; the solution threshold; the deadline for
finding the solution; and the reward offered for providing a
valid solution. A valid solution is a feasible one that meets
a given threshold. During the mining process, an instance
is selected from the instance pool and it is solved by the
miner as a part of the CP execution. As various instances may
require significantly different execution time for finding a valid
solution, grouping of instances into approximately same sized
packages is proposed in [16] to balance the miners’ work.
The size of packages should correspond to the Block Insertion
Time (BIT). Some other approaches to balancing miners’ work
are considered in [2], [7], [24]. The instance (or a package of
instances) must be connected to the composed block in an
unique way (to mimic the correspondence between the block
and the nonce value in PoW). One possible way to realize
this correspondence is described in [26]. The obtained valid
solutions (if any) are stored in the solution pool for verifiers
to validate them and nominate one of the miners for a reward.

To get the required valid solutions of their instances,
customers should invoke Solution retrieval module [26]. It
searches through the solution pool for all valid solutions
of a given instance, finds the best one, and provides it to
the customer. After that, the reward is granted to the miner
who provided the selected best valid solution. It may happen
that the Solution retrieval module cannot find valid solution
for a number of reasons (deadline is missed, threshold is
unreachable, there is no adequate solution method, etc.). It
may be possible to overcome the first two reasons, if the
corresponding input parameters are flexible and the instance
can remain active in the mining process. Otherwise, these
issues are problem dependent and cannot be resolved by the
means of BC framework. There can be found some attempts to
prevail the lack of solution methods, by requiring customers to
provide the optimization algorithm together with the problem
instance [24], [27], by transforming the optimization problem
into an equivalent one for which the solution method exists [2],
or by applying some general solution method [7]. However,
these approaches may not be always feasible. It is not realistic
to assume that customers from industry are familiar with

Operation Research field and, even if they are, they might
not know how to provide an appropriate solver. In addition,
asking customers to submit solution method could deffer them
to other resource providers, such as grids, clouds, etc. On the
other hand, problem transformation requires additional effort
either by customer or by miner (actually, BC management
software) and the instance of resulting problem may not be of
same size and/or difficulty as the original instance. Moreover,
general purpose solvers are usually not as efficient as dedicated
solution methods, i.e., solution algorithms developed taking
into account an a priory knowledge about the considered
problem [19].

In contrast to the previous definition of CO problem in-
stance [26] that assumed input data file, threshold, and dead-
line, we propose to use the term instance for a 5-tuple: input
data file, threshold, deadline, corresponding solver, and the
estimated solver execution time. To ensure the possibility of
solving any CO problem, we need to consider inclusion of
additional BC components that we explain in the following
sections.

III. THE STRUCTURE OF CHANGES IN POUW-BASED
CONSENSUS PROTOCOL

Additional BC components that are needed to support
solving an arbitrary CO problem are related to CO problem
identification, solver identification, verification of identified
solver, how to develop a solver if one does not exist, and
how to verify the correctness of a newly developed solver for
a given problem. In Figure 2 additional BC components are
represented and we describe them in the remainder of this
section.

When a customer sends a transaction, or a smart contract
containing request to solve their instance is established, the
underlying CO problem might be unknown. It is not expected
that customers know how to define a CO problem in a way
that our framework will be able to match the instance with
the appropriate solver. Therefore, we need an additional BC
component (Problem identification) that will identify a CO
problem class and its variant, based on the text files customers
provide. We propose to make a module based on modern
generative Al technologies (Google Al Bard, ChatGPT, etc.).
It is not possible to just rely on inquiries as they might result
in multiple or wrong CO problem definitions, and even if they
are correct they need to be verified.

As matching between the instance and a CO problem defi-
nition is established, the next step is to provide an appropriate
solver. The additional BC component needs to automatically
find the solver. Two scenarios can be identified for this search:
first, the solver is already incorporated into BC framework
Solver matching, second, it is necessary to search for solver
outside the BC framework Finding solver. Both scenarios
might be considered as a part of useful work, i.e., a search
can be performed by miners during the mining phase. In the
first case, the complexity of the search is fully defined by the
complexity of BC system, i.e., the number of CO problem
solvers already included. For example, we could establish a

Basic Users

85

Customers

50 58

Transaction Pool

ifi s R s
Verifiers L L

Blockchain)

Customers

Controlling Difficulty

!

Task Pool

o o b

TSP SCH1 TSP2 MAXSAT1

Developers Find the Solutions
for New

Developers

5 58

o

&

Finding
Solver (el

!

Developing @
Solver

)
Verification and
Identified Solver Q

AN

Fig. 2. The new COCP solution framework

smart contract that contains a list of all already incorporated
CO problem solvers. In the second case, the search should
be expanded on publicly available repositories outside of BC
system and thus its complexity needs to be estimated.

Verification of identified solver is needed to check whether
the match is correct. As the search for solver is performed as
a part of useful work, verification should be performed inside
the BC system. However, we still need to add this component
that would be used by the verifiers.

In case that a solver does not exist, an additional BC com-
ponent Developing solver is needed to develop an appropriate
algorithm. This could also be considered as a part of useful
work of CP, if an automatic program generator or Al is used.
However, we do not expect an algorithm to be developed
within the block mining time defined by BIT. Thus, there
might be a need to include a new type of BC users that
we will call developers. For developers’ autonomous work we
need to plan for adequate incentives and reward scheme. The
developers’ contributions should be considered as useful work
for the whole BC system, outside of CP.

Similarly to the customers who join the BC system to benefit
from getting their CO problem instances solved, the developers
can be new participants with good programming skills that
wish to make a profit by being rewarded for providing solution
algorithms for some CO problems. On the other hand, any
other BC user can decide to change their role, and become a
developer. For example, miners who did not manage to publish
a block for some time may decide to increase the reward by
developing new optimization algorithms.

Whether the solver is developed as a part of useful work

or by developers, Verification of the developed solver needs to
be envisioned as an additional BC component.

IV. IMPLEMENTATION CHALLENGES

Implementing a successful PoUW-based consensus protocol
requires addressing the many implementation challenges that
we identify in the remainder of this section. We grouped
these challenges in such a way to correspond to the suggested
additional BC components.

Performance evaluation of the envisioned framework is not
possible before all the challenges are resolved. As we rely on
previously established COCP [5], [26] and difficulty estimation
framework [16], stability, scalability, and fairness should not
change when we extend the variety of the considered CO
problems.

A. CO Problem Identification

As we already mentioned, identification of CO problem
through modern generative Al technologies need to be verified.
Verification of CO problem definition might be impossible
without customer interaction. A possible solution would be
to make an user interface which would allow a customer to
reflect upon correctness of problem identification.

B. Solver Identification

The goal of solver identification is to pair up a CO problem
and the appropriate solver. In such a way the CO problem
instance is fully defined and can be sent to the controlling
difficulty module [16] for estimating the solver execution time.
If the result of solver identification is multiple solvers,

the difficulty must be estimated for all input data-solver pairs.
After the controlling difficulty is completed, the solver with
the shortest estimated execution time should be combined with
input data to make an instance which will be added. As the
solver execution time is already estimated, it should be set to
the appropriate value. When the result of solver matching is
not found, that means that we do not have an appropriate
solver and finding solver needs to be triggered. However, when
finding solver results in not found, that might indicate that
we didn’t allocate enough time for this task. We can increase
the time for search up to the BIT and, if the result is still
not found, it is time to give up searching and delegate the
problem to the developers.

Announcing the need for a new solver could be done
through a smart contract or transaction, the same way that we
use to submit new instances. That announcement should be a
result of both the estimated demand for CO problem instances
without a solver and the estimated return of the investment in
development. In such a way we prevent malicious behavior of
users who have already developed solvers for their own use.

C. Verification of Identified Solver

Automatic verification whether the solver identification was
successful may be a very difficult challenge. There is no
known evaluation measure that will assess the correctness of
an arbitrary CO problem solver.

There exist evaluation measures for some known CO prob-
lems and their solvers. This knowledge is the basis for building
an automatic verifier for each new problem solver that we want
to incorporate into the BC system.

D. Developing Solver

Any user may choose to become a developer at any time, so
the solver developing process should be considered concurrent.
Consequently, it is possible to end up with several solvers
for the given CO problem. Therefore, suitable incentives and
reward scheme should be proposed to both stimulate the
developers and discourage any malicious behaviour of other
users.

To supply the incentives, the customers could be asked
to increase the reward provided for solving their instances.
Miners’ reward would be one part of the provided reward,
while the other part would be stored for rewarding developers.

Malicious behavior of developers should be prevented even
before the stating the announcement for the new solver and it
is thus addressed in solver identification.

E. Verification of Developed Solver

With respect to verification of identified solver, automatic
verification of developed solver is even more complex chal-
lenge. However, resolution of this challenge could be the same
automatic verifier we introduced.

F. Additional Implementation Challenges

Additional challenges include how to incorporate the request
to solve new problems and how to estimate a difficulty for that

new problem. Regarding the first mentioned challenge, one
possible solution would be to delay a few initial requests for
solving some new CO problem, but to track requests similarly
to caching in storage systems [22]. If there is an identified
need to consider this particular CO problem, only then we
initialize the procedure to include it in the BC system.

To estimate a difficulty of CO problem instances, we
need information about solvers and their complexity. This
information should be available to the difficulty estimation
module [16]. Storage of solvers and solved instances might
become a problem for an established network. On an opposite
end, the problem is how to estimate difficulty without any
a priori information about instances. One possible solution,
inspired by virtual cache framework for storage systems [3],
[22], [23], is to limit the solution time to BIT, track it, and
learn the difficulty during the execution of solution method
over instances in the instance pool.

Finally, our future work needs to include resolution of a
challenge that is related to miners not being able to solve
all instances they were given. Problems include the ways
how to verify their effort. As main goals of the PoUW-based
CPs are to provide more incentives to miners for their effort
and at the same time provide customers with valid solutions
(thus encourage them to submit their instances to be solved),
it would make sense to reward miners for the work they
completed. Thus, it seems to be a good idea to set a threshold
of the percentage of instances that need to be solved to publish
a block. This should be considered carefully as the fairness
established through difficulty estimation framework may be in
jeopardy. However, establishing this threshold contributes to
efficient usage of the BC system resources.

V. CONCLUSIONS

We presented the main components of the Proof-of-Useful-
Work (PoUW) based Consensus Protocol (CP), with an aim
to address exploration of an arbitrary real-life combinatorial
optimization (CO) problems. The main advantages of the
envisioned consensus protocol besides efficient utilization of
computing resources and various sources of rewards for par-
ticipants are that it allows for wide community adoption by
treating useful work that is of value for more customers. We
discussed how the structure of the envisioned changes would
look like and what are the challenges that need to be solved for
the system to work. The new type of BC users, developers are
introduced to supply CP with solutions for new CO problems
not included in the Blockchain (BC) system.

Possible directions for future work may include detailed
implementation of all components of envisioned CP. It is also
important to identify and resolve all security challenges that
come with solving real-life CO problem instances, introducing
new type of participants, and providing various incentives for
them. A very important part of future work that might have
further implications is resolving the identified challenges with
the automatic verification of developed solvers.

ACKNOWLEDGMENT

Authors thank students Anja Vujaci¢ University of Belgrade,
School of Electrical Engineering, Ognjen NeSkovi¢, and Pavle
SekeSan, University of Belgrade, Faculty of Mathematics for
valuable discussions. In addition, authors express their grati-
tude to the anonymous reviewers for their valuable comments
that resulted in the improvements of this paper.

[1]

[2]

[3]
[4]

[5]

[6

=

[7

—

[8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

A. Baldominos and Y. Saez, “Coin. ai: A proof-of-useful-work scheme
for blockchain-based distributed deep learning,” Entropy, vol. 21, no. 8,
p. 723, 2019.

M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan,
“Proofs of wuseful work,” IACR Cryptology ePrint Archive
(https://eprint.iacr.org/2017/203.pdf), 2017, last update 2021.

S. Bhattacharya, K. Gopinath, and D. Voigt, Resource Proportional
Software Design for Emerging Systems. CRC Press, 2020.

C. Chenli, B. Li, Y. Shi, and T. Jung, “Energy-recycling blockchain
with proof-of-deep-learning,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE, 2019, pp. 19-23.
T. Davidovi¢, M. Todorovi¢, D. Ramljak, T. Jak$i¢-Kriiger, L. Matijevié,
b. Jovanovi¢, and D. UroSevi¢, “COCP: blockchain proof-of-useful-
work leveraging real-life applications,” in International Conference on
Blockchain Computing and Applications (BCCA 2022). San Antonio,
Texas, USA: IEEE, 2022, pp. 107-110.

Ethereum.org, “Proof-of-stake (pos),”
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/,
2023, accessed July 2023.

M. Fitzi, A. Kiayias, G. Panagiotakos, and A. Russell, “Ofe-
limos: Combinatorial optimization via proof-of-useful-work\a prov-
ably secure blockchain protocol,” TACR Cryptology ePrint Archive
(https://eprint.iacr.org/2021/1379.pdf), 2021.

M. Haouari, M. Mhiri, M. El-Masri, and K. Al-Yafi, “A novel proof
of useful work for a blockchain storing transportation transactions,”
Information Processing & Management, vol. 59, no. 1, p. 102749, 2022.
L. Ismail and H. Materwala, “A review of blockchain architecture and
consensus protocols: Use cases, challenges, and solutions,” Symmetry,
vol. 11, no. 10, p. 1198, 2019.

S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, no. 1, 2012.

B. Li, C. Chenli, X. Xu, T. Jung, and Y. Shi, “Exploiting computation
power of blockchain for biomedical image segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 2802-2811.

B. Li, C. Chenli, X. Xu, Y. Shi, and T. Jung, “Dlbc: A deep learning-
based consensus in blockchains for deep learning services,” arXiv
preprint arXiv:1904.07349v2, 2020.

W. Li, “Adapting blockchain technology for scientific computing,” arXiv
preprint arXiv:1804.08230, 2018.

A. Lihu, J. Du, 1. Barjaktarevic, P. Gerzanics, and M. Harvilla, “A
proof of useful work for artificial intelligence on the blockchain,” arXiv
preprint arXiv:2001.09244, 2020.

A.F. Loe and E. A. Quaglia, “Conquering generals: an NP-hard proof of
useful work,” in Proceedings of the 1st Workshop on Cryptocurrencies
and Blockchains for Distributed Systems. ACM, New York, NY, 2018,
pp- 54-59.

U. Males, D. Ramljak, T. Jaksi¢-Kriiger, T. Davidovi¢, D. Ostoji¢, and
A. Haridas, “Controlling the difficulty of combinatorial optimization
problems for fair proof-of-useful-work-based blockchain consensus pro-
tocol,” Symmetry, Special Issue "Advances in Multidisciplinary Explo-
ration for Symmetric Key Cryptography and Blockchain Technology”,
vol. 15, no. 1, pp. 140:1-32, 2023.

M. Mhiri, K. Al-Yafi, B. Legros, O. Jouini, and M. Haouari, “A
blockchain-based framework to optimize shipping container flows in the
hinterland,” International Transactions in Operational Research, 2023.
C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future
blockchain networks: fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85727-85745, 2019.

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Ostoji¢, A. Urosevié, T. Davidovi¢, T. Jaksi¢ Kriiger, and D. Ramljak,
“Decomposition-based efficient heuristic for scheduling,” in (submitted),
2023.

C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in iot: A blockchain-assisted collective q-
learning approach,” IEEE Internet of Things Journal, 2020.

D. Ramljak, T. Davidovi¢, D. UroSevi¢, T. Jaksi¢ Kruger, L. Matijevié,
M. Todorovié, and . Jovanovi¢, “Combinatorial optimization for self
contained blockchain: An example of useful synergy,” in Proc. XLVIII
Symposium on Operational Research, SYMOPIS 2021, Banja Koviljaca,
Serbia, 2021, pp. 285-290.

D. Ramljak, Data Driven High Performance Data Access.
University, 2018.

D. Ramljak, D. A. Tom, D. Voigt, and K. Kant, “Modular framework
for data prefetching and replacement at the edge,” in Edge Computing—
EDGE 2018: Second International Conference, Held as Part of the
Services Conference Federation, SCF 2018, Seattle, WA, USA, June 25-
30, 2018, Proceedings 2. Springer, 2018, pp. 18-33.

N. Shibata, “Proof-of-search: combining blockchain consensus forma-
tion with solving optimization problems,” IEEE Access, vol. 7, pp.
172994173 006, 2019.

W. A. Syafruddin, S. Dadkhah, and M. Koppen, “Blockchain scheme
based on evolutionary proof of work,” in 2019 IEEE Congress on
Evolutionary Computation (CEC). 1EEE, 2019, pp. 771-776.

M. Todorovié, L. Matijevi¢, D. Ramljak, T. Davidovi¢, D. Urosevié,
T. Jaksi¢-Kriiger, and D. Jovanovié, “Proof-of-useful-work: Blockchain
mining by solving real-life optimization problems,” Symmetry, Special
Issue “Advances in Multidisciplinary Exploration for Symmetric Key
Cryptography and Blockchain Technology”, vol. 14, no. 9, pp. 1831:1-
47, 2022.

A. Toulemonde, L. Besson, L. Goubin, and J. Patarin, “Useful work:
a new protocol to ensure usefulness of pow-based consensus for
blockchain,” in Proceedings of the 2022 ACM Conference on Informa-
tion Technology for Social Good, 2022, pp. 308-314.

J. Xu, C. Wang, and X. Jia, “A survey of blockchain consensus
protocols,” ACM Computing Surveys, 2023.

Q. Zhao, X. Tai, J. Yuan, J. Xu, L. Feng, and Z. Ma, “Performance anal-
ysis of pouw consensus mechanism: Fork probability and throughput,”
Peer-to-Peer Networking and Applications, vol. 15, no. 2, pp. 1126—
1138, 2022.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
IEEE international congress on big data (BigData congress). 1EEE,
2017, pp. 557-564.

Temple

