
Bee Colony Optimization for Feature Selection

Jana Vuckovic1 and Tatjana Davidovic2

1 Faculty of Mathematics, University of Belgrade jana.vuck@gmail.com
2 Mathematical Institute of Serbian Academy of Sciences and Arts

tanjad@mi.sanu.ac.rs

Abstract. Many optimization problems are known to be NP hard prob-
lems. One of these problems is a Feature Selection (FS). It can be for-
mulated as follows. Suppose we are given a data set which consists of
many instances, each described by many attributes and a particular way
of learning how to classify those instances. Our goal is to decrease the
number of attributes in order to reduce the dimension of classification
problem with minimum degradation (if any) in performances of learning.
In this paper we apply metaheuristic named Bee Colony Optimization
(BCO) to this problem. We consider four different variations of BCO,
test and discuss their performances on 5 databases from UCI Machine
Learning Repository.

Keywords: NP-hard Optimization Problems · Clustering · Classifica-
tion · Metaheuristic.

1 Introduction

Classification is an optimization problem with a goal is to categorize elements
into different classes based on their properties. There are many Machine Learn-
ing (ML) algorithms for classification. Classification usually refers to supervised
learning, while clustering refers to unsupervised learning. In this paper we use
clustering algorithm K-Means as a way of learning. More about the algorithm
can be found in [6].

Complexity of classification and clustering algorithms usually depend on
number of attributes. Therefore, we want to decrease that number as much as
possible, but without affecting the performance of the underlying learning pro-
cedure. This problem is known as a Feature Selection (FS). The trivial solution
to this problem is checking all the subsets of attributes. However, this approach
has the exponential complexity. Hence, it can be used only for very small number
of attributes, which is rarely the case. In this paper we address this problem by
using metaheuristics.

Metaheuristics are high level heuristics applied to find a good solution to
the considered optimization problem. There is no guarantee how close the found
solution is to the optimal solution. Metaheuristics are usually inspired by nat-
ural events and model behaviour of some population. In this paper we observe
metaheuristic called Bee Colony Optimization (BCO), which is an example



2 J. Vuckovic, T. Davidovic

of Swarm Intelligence algorithm. We present four different implementations of
BCO. Overview of BCO is given in [2], [7]. Authors of those papers differentiated
two versions of BCO called constructive (BCOc) and improvement (BCOi). We
applied BCOi version of BCO on FS while in [4], [5] BCOc is applied.

Paper is organized as follows. In the second section we give an overview of
the most popular FS methods. In the third section we briefly describe BCO and
provide the details about the implementation of our algorithms. Fourth section
contains information about databases that we used and results we obtained.
Conclusion is given in fifth section.

2 Feature Selection

We consider FS problem, that can be formulated as follows. Let us assume that
we are given a set O of m objects, each described with n attributes. In this
paper we consider only numerical values of attributes. Let x ⊂ Rn×m be matrix,
such that xi,j represents a value of the i-th attribute of the j-th object. Each
object belongs to exactly one of K categories, and that information is stored
in vector y. We can apply many machine learning algorithms in order to teach
our program how to classify objects into correct categories and we can evaluate
each solution we get. So, given the data (x, y), ML algorithm and concrete way
to evaluate solution, the goal is to find the most significant subset of attributes.

Feature selection methods can be divided into three main categories [1]:

– Filter methods are based on statistical analysis. Their job is to calculate
a relevance of an attribute, usually using some statistical test or using some
correlation criteria. So this methods do not call ML algorithm and because
of that they are very efficient.

– Wrapper methods consider FS as an optimization problem, which search
space consists of all subsets of {1, 2...n} (except the empty subset) and objec-
tive function of a subset is evaluation of classification using that attributes.
Since there are 2n − 1 elements in a search space, solution that consists of
checking every combination of attributes, has the exponential complexity.
Wrapper methods use some search algorithms with polynomial complexity,
but it does not guarantee that the found subset maximizes the objective
function. Although wrapper algorithms have polynomial complexity, they
call ML algorithm many times. Because of this, wrapper methods are time
expensive, and they are usually applied only to smaller data sets. Also, they
depend on ML algorithm we use. Some of Wrapper Methods are Forward
Selection, Backward Selection etc.

– Embedded methods select features during the model training. This im-
plies that embedded methods can be used only with supervised learning
algorithms. However, they can be both as fast as filter methods and consid-
ering the interaction of features like wrapper methods do.

More about FS methods can be found in [1]. According to previous explana-
tion of different FS methods, our approach is mostly similar to wrapper methods.



Bee Colony Optimization for Feature Selection 3

It considers FS as an optimization problem, uses metaheuristic as a search algo-
rithm, and K-means as an unsupervised learning procedure.

3 Bee Colony Optimization Method

3.1 Overview

Bee Colony Optimization (BCO) is a metaheuristic inspired by foraging habits of
Honeybees [2]. It is an iterative method. At the beginning, initialization is done,
meaning each bee is given a solution. One iteration consists of NC repetitions of
forward pass and backward pass, and selecting solution for the next iteration for
each bee. During forward pass each bee transforms its solution, the best global
solution is updated, if needed, and the stopping condition is checked. During
backward pass each bee evaluates its solution, decides whether it stays loyal or
becomes uncommitted follower, and at the end recruiting is done. Bees which stay
loyal to its current solution will later continue on transforming that particular
solution. Bees which are not loyal to their solutions are called uncommitted
followers and they are assigned a loyal bee during recruiting. We call that loyal
bee a recruiter of the uncommitted follower. After being recruited, uncommitted
follower changes its solution into recruiter’s solution. We are constantly checking
whether the global best solution has been improved. The very end of iteration is
selecting a solution for the next iteration for each bee. All the above described
steps are done until a stopping condition is satisfied. Stopping condition can be
time limit, maximal number of iterations, number of function evaluations, etc.
Whether the stopping condition is satisfied is checked during every forward pass,
because they require most of the time.

According to the categorization in [2], [7] BCO implementations for FS can
be divided into two categories. If transformation in forward pass consists only
of adding the attributes, that is known as BCOc, whereas BCOi enables both
adding and removing the attributes. We consider BCOi.

In this paper we will discuss two different ways of transformations, which
we call tournament and roulette, and two different ways of making a loyalty
decision, which we call roulette and mean. That gives us four different variations
of algorithm in total.

Pseudo-code is provided in Algorithm 1, while the remainder of this section
contains the concrete details for initialization, transformation, evaluation, loyalty
decision, recruiting and solution selection we used.

3.2 Implementation

First of all, we introduce the notation. Let n be a number of attributes, m a
number of objects, K a number of categories, x ∈ Rn×m data which describes
objects to be categorized and y ∈ {1, 2...K}m vector which stores correct cat-
egories of each object. A solution is represented as a vector v ∈ {0, 1}n, such
that if v[i] = 1 then attribute i is included, otherwise it is not. Basic parameters



4 J. Vuckovic, T. Davidovic

Algorithm 1 Pseudo-code of BCO algorithm

1: procedure BCO(B,NC, STOP, unsuccess max)
2: Initialization()
3: unsuccess = 0
4: while True do:
5: Improvement = False
6: for step in 1 : NC do:
7: for b in 1 : B do:
8: Transform(sol[b])
9: Evaluate(sol[b])

10: imp = Update((solbest, fbest))
11: Improvement = Improvement or imp
12: if STOP then:
13: return solbest
14: DecideLoyalty()
15: Recruiting()

16: if Improvement then:
17: unsuccess = 0
18: else:
19: unsuccess+ = 1

20: if unsuccess == unsuccess max then:
21: unsuccess = 0
22: Initialization()
23: else:
24: for b in 1 : B do :
25: sol[b] = solbest

of BCO are B which represents a number of bees, NC a number of alterna-
tions between forward and backward passes per iterations, a stopping condition
STOP and unsuccess max which will be described later in the paper. Vectors
sol and f are such that sol[j] and f [j] represent current solution of j-th bee and
its fitness, for j = 1..B. solbest and fbest represent respectively the best global
solution and its fitness.

Initialization provides each bee with a same solution s randomly generated in
the following way. Each attribute is evaluated by calculating the accuracy of clus-
tering depending only on that attribute. Assume that we store that information
in vector h. After that, we define vector hnorm such that:

hnorm[i] =
h[i]− hmin

hmax − hmin
.

hnorm[i] takes value from the interval [0,1] and it represents probability that i-th
attribute is chosen. Now we use roulette selection, to decide for each attribute
whether it will be included. So s is constructed as follows: for each attribute
attr = 1..n, we generate a random number r from uniform U(0, 1) distribution.
If r ≤ hnorm[attr], then s[attr] = 1, otherwise s[attr] = 0.



Bee Colony Optimization for Feature Selection 5

Transformation is implemented in two different ways, named tournament and
roulette, inspired by tournament and roulette selection. Transforming a solution
means adding or removing some attributes. In our case, half of bees are always
removing attributes and half of bees are always adding attributes. This implies
that we always set parameter B to be even.

Tournament transformation is implemented using tournament selection. In
case of adding attributes each bee is randomly given a set of five not selected
attributes and the bee is supposed to select one which best suits with its cur-
rent solution. So for each of those attributes bee evaluates solution obtained by
adding that attribute, and picks the one with the highest evaluation. This is
repeated r times where r is randomly chosen from {1, 2, 3}. If in some point five
not selected attributes do not exist, we randomly chose five attributes that are
already included in the solution, remove them and continue with the procedure.
Similar is in the case of removing attributes. Tournament approach implies many
solution evaluations, which could be time expensive.

Roulette transformation involves less solution evaluations. In case of adding
attributes, bee considers all the attributes that are not contained in its solution.
Let Unsel be the set of all attributes with that property. Assume that h[i] rep-
resent accuracy of clustering depending only on attribute i (same as before). Let
us define two values hUnsel

min and hUnsel
max that represent minimum and maximum

value of {h[i]|i ∈ Unsel}. We also define hUnsel
norm [i], for i ∈ Unsel such that:

hUnsel
norm [i] =

h[i]− hUnsel
min

hUnsel
max − hUnsel

min

For each attribute i ∈ Unsel we generate random number r from uniform U(0, 1)
distribution. If r ≤ hUnsel

norm [i] we add attribute i. Removing attributes is similar.

Evaluation, or as we also say, calculating fitness of a solution, is defined as
accuracy of clustering. We always know number K of categories we have, so we
can use K-Means algorithm for clustering. We do clustering only using attributes
contained in a particular solution. Let us define vector y labels, such that if
y labels[i] = c, for some 1 ≤ i ≤ m and 1 ≤ c ≤ K, then instance i belongs
to cluster c. The idea is that the objects from same cluster should be in same
category. So, we have to decide for each cluster a category which represents it.
The easiest way is to calculate how many instances from each category is in
a particular cluster, and to pick category which has the most representatives
in that cluster. After we find mapping from clusters to categories, we define
accuracy as a quotient of correct guesses and number of objects m.

Notice that evaluation of a solution demands lots of time, so we do not want
to evaluate same solutions twice. In order to avoid it, we use hash table to store
already evaluated solutions and their fitness.

Making a loyalty decision is done in two different ways - mean and roulette.
Both approaches guarantee existence of at least one loyal bee. One approach is



6 J. Vuckovic, T. Davidovic

deterministic, while other is stochastic. Before we introduce those approaches,
let us recall that f [b] represent fitness of solution corresponding to bee b.

Mean principle suggests that bee b is loyal if and only if f [b] ≥ fmean, where

fmean =

∑B
b=1 f [b]

B
.

Roulette principle assigns each bee b a probability P [b] to stay loyal to its
solution. It is calculated as follows:

P [b] =
f [b]− fmin

fmax − fmin
,

where fmin = minb=1..B f [b] and fmax = maxb=1..B f [b]. After vector P is cal-
culated, for each bee we generate a random number r from uniform distribution
U(0,1). If r ≤ P [b], bee b stays loyal, otherwise it becomes an uncommitted
follower.

Recruiting is the final stage of backward pass where each uncommitted follower
chooses which loyal bee to follow. Note that if bee b1 follows b2, b1 overtakes the
solution advertised by b2. This is done using roulette wheel principle, where
probability RP [b] that loyal bee b is followed by some uncommitted follower is
calculated as follows:

RP [b] =
f [b]∑

i∈Loyal f [i]

Selecting solution for the next iteration is the final part of each iteration.
It is implemented as follows: for each iteration we check whether the global best
solution has been improved in that iteration. If the global best solution has not
been improved in past unsuccess max iterations, we initialize new solution and
assign it to each bee. Otherwise, each bee is assigned the global best solution.
Note that unsuccess max is an input parameter for BCO.

4 Experimental Evaluation of BCOi for Feature Selection

The proposed algorithms are implemented in Python using Jupyter Notebook.
Libraries which are mostly used are sklearn, numpy and pandas. They are run
on OS Ubunutu 20.04 on Intel(R) i7-1065G7 x86 64-based processor with 8GB
RAM.

4.1 Databases

In order to compare these four approaches we tested each of them on the exam-
ples from UCI Repository of Machine Learning Databases [3]. These databases
are chosen because they are suitable for classification, values of attributes are



Bee Colony Optimization for Feature Selection 7

real numbers with no missing values and the number of attributes is larger than
10. The characteristics of used databases are summarized in Table 1.

Table 1. Description of the databases: number of objects, attributes and classes

Name #objects #attributes attribute types #classes

Breast cancer 569 21 real 2
Cardiotography 2126 28 real 3
Image segmentation 2310 18 real 7
Connectionist bench 208 60 real 2
Parkinson 197 23 real 2

4.2 Results

Testing was done as follows. We set the parameters to be: B = 8, NC = 5,
unsuccess max = 5 and stopping condition was maximal execution time of 20
seconds. Due to the stochastic nature of the BCO algorithm, for each com-
bination of transformation type and loyalty decision type, we performed 100
repetitions and measure several characteristics:

– average fitness in 100 repetitions

– maximal fitness in 100 repetitions

– standard deviation of fitness in 100 repetitions

– average T-best, where T-best represents time in seconds when the best so-
lution is obtained

– average frequency of repeating solutions

Note that combinations are named X − Y , where X ∈ {T,R}, stands for type
of transformation and Y ∈ {R,M} stands for making a loyalty decision. For
example, R - M means roulette transformation combined with making a loyalty
decision according to the mean.

In Table 2 we present average fitness in 100 repetitions for each database and
we mark in bold the best results. We can see that the best results are obtained by
both R-R and R-M in case of Breast cancer, Cardiography, Image Segmentation
and Parkinson; and by R-R in case of Connectionist bench. Thus, we conclude
that roulette transformation performs better than tournament transformation.
Since there is a significant difference between these types of transformations in
Image segmentation and Connectionist bench, there is a respectable difference
between these types in average. However, if we fix the type of transformation,
there is no a big difference whether we use roulette or mean as a type of making
loyalty decision.



8 J. Vuckovic, T. Davidovic

Table 2. Average fitness

Name R - R R - M T - R T - M

Breast cancer 0.959 0.959 0.955 0.955
Cardiotography 0.837 0.837 0.824 0.824
Image segmentation 0.812 0.812 0.787 0.786
Connectionist bench 0.777 0.775 0.693 0.696
Parkinson 0.816 0.816 0.815 0.814

Average 0.840 0.840 0.814 0.814

In Table 3, we present the maximal fitness obtained in 100 repetitions for
each database. According to Table 3, the best solutions are obtained mostly by
R-M, except in the case of Parkinson, in which the best solution was obtained
by T-R. However, best fitness obtained by R-M is the highest in average.

Table 3. Best fitness

Name R - R R - M T - R T - M

Breast cancer 0.968 0.970 0.967 0.968
Cardiotography 0.848 0.850 0.845 0.845
Image segmentation 0.815 0.815 0.815 0.815
Connectionist bench 0.822 0.822 0.750 0.755
Parkinson 0.821 0.821 0.836 0.831

Average 0.854 0.855 0.843 0.843

We measured standard deviation of fitness in order to determine which al-
gorithm is the most stable. According to Table 4, in each of these databases,
difference in stability between R-R and R-M is not huge, as well as the differ-
ence between T-R and T-M. In Connectionist bench T-M is the most stable
algorithm, while in other databases algorithms that use roulette transformation
are the most stable. On databases Image segmentation and Parkinson, difference
in stability depending on type of transformation is significant. As a result, the
most stable algorithms in average is R-R.

Table 4. Standard deviation of fitness

Name R - R R - M T - R T - M

Breast cancer 0.00405 0.00480 0.00534 0.00602
Cardiotography 0.00542 0.00514 0.00728 0.00758
Image segmentation 0.00303 0.00295 0.02630 0.02955
Connectionist bench 0.02164 0.02344 0.02319 0.02016
Parkinson 0.00179 0.00189 0.00883 0.00986

Average 0.00718 0.00764 0.01419 0.01463



Bee Colony Optimization for Feature Selection 9

We measured time when the best solution is obtained, which we call T-best,
and in the Table 5, we present average of T-best for each of the combinations.
Again, we see that there is no significant difference when it comes to type of
making loyalty decision. However roulette transformation is significantly faster
than tournament transformation in all the data sets, except Cardiotography.
Also in average, roulette transformation is faster.

Table 5. Average T-best (in seconds)

Name R - R R -M T - R T - M

Breast cancer 10.825 11.323 15.059 13.874
Cardiotography 9.729 10.329 9.033 9.174
Image segmentation 11.320 10.557 13.569 13.595
Connectionist bench 12.401 12.071 14.768 13.722
Parkinson 2.909 2.636 11.457 11.308

Average 9.439 9.383 12.777 12.335

We measured average frequency of repeating considered solutions. Since each
of the combinations are running for the same time, combinations with less fre-
quency of repeating the solutions considers a larger amount of solutions. From
Table 6, we see that T-R and T-M consider more solutions than R-R and R-M
in all data sets (except Breast Cancer) and in average. However, although they
consider more solutions, R-R and R-M consider better solutions.

Table 6. Average frequency of repeating considered solutions

Naziv baze R - R R - M T - R T - M

Breast cancer 1.267 1.246 1.293 1.284
Cardiotography 1.389 1.333 1.199 1.188
Image segmentation 1.514 1.554 1.374 1.381
Connectionist bench 1.393 1.410 1.203 1.211
Parkinson 1.775 1.799 1.393 1.375

Average 1.468 1.468 1.292 1.288

5 Conclusion

In this paper an application of Bee Colony Optimization on Feature Selection
problem is considered. In our interest were particularly FS problems in combi-
nation with clustering. As the clustering algorithm we used K-Means.

As BCOc has already been explored in literature, we used BCOi. This implies
that we do not only add attributes to a solution during Forward Pass, we can also
remove them. Therefore, instead of constructing the solution, we transform it,
aiming to improve the global best solution. Two different types of transformation



10 J. Vuckovic, T. Davidovic

and making decisions about loyalty are compared on five different databases from
UCI Machine Learning Repository.

From presented results, we can conclude that there is no big difference
whether we make loyalty decision according to mean, or using roulette principle.
However, we see that roulette transformation better performed than tournament
transformation. It provides us with better solutions, it is faster and more stable.
However, tournament transformation repeats the solution less frequently, which
means that it explores more solutions, but still does not manage to find better
solutions than roullete transformation.

References

1. G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers
& Electrical Engineering, 40(1):16–28, 2014.

2. T. Davidović, D. Teodorović, and M. Šelmić. Bee colony optimization Part I: The
algorithm overview. Yugoslav Journal of Operational Research, 25(1):33–56, 2015.

3. Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
4. R. Forsati, A. Moayedikia, and A. Keikha. A novel approach for feature selection

based on the bee colony optimization. International Journal of Computer Applica-
tions, 43(8):13–16, 2012.

5. A. Moayedikia, R. Jensen, U. K. Wiil, and R. Forsati. Weighted bee colony algorithm
for discrete optimization problems with application to feature selection. Engineering
Applications of Artificial Intelligence, 44:153–167, 2015.

6. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

7. D. Teodorović, M. Šelmić, and T. Davidović. Bee colony optimization Part II: The
application survey. Yugoslav Journal of Operational Research, 25(2):185–219, 2015.


