

1027

DECOMPOSITION-BASED EFFICIENT HEURISTIC FOR SCHEDULING

DRAGUTIN OSTOJIĆ1, ANDRIJA UROŠEVIĆ2, TATJANA DAVIDOVIĆ3, TATJANA JAKŠIĆ

KRÜGER3 AND DUŠAN RAMLJAK4

1 Faculty of Science, University of Kragujevac, Kragujevac, dragutin.ostojic@pmf.kg.ac.rs
2 Faculty of Mathematics, University of Belgrade, Belgrade, andrija.urosevic@matf.bg.ac.rs

3 Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, {tanjad, tatjana}@mi.sanu.ac.rs
4 School of Professional Graduate Studies at Great Valley, The Pennsylvania State University, Malvern,

dusan@psu.edu

Abstract: We develop Decomposition-based Iterative Stochastic Transformation (DIST), an efficient

heuristic algorithm for a well-studied hard combinatorial optimization problem, scheduling

independent jobs on identical machines, known as P||Cmax. DIST explores the relationship between

P||Cmax, Bin Packing Problem, and Multiple Subset Sum Problem to provide high-quality solutions.

DIST relies on a partitioning strategy and iteratively performs nondeterministic transformations of

current solution thus it represents a stohastic search algorithm. It has a built-in mechanism to

guarantee the optimality of the provided solution and, given enough time, DIST can always solve a

given instance to optimality. However, DIST exhibits very good performance within short execution

time, as it is demonstrated by the experimental evaluation on the popular benchmark sets of

instances.

Keywords: combinatorial optimization, scheduling independent jobs on identical machines,

problem duality, stochastic search, lower and upper bounds

1. INTRODUCTION

Recently, authors often use some ad hoc approaches when developing optimization algorithms.

For example, they formulate a Mixed-Integer Programming (MIP) model, employ an off-the-shelf

solver or use some standard paradigms (evolutionary algorithms, local search procedures based on

metrics, etc.). Such approaches mostly disregard the a priori knowledge about the problem that can

have a significant impact on the algorithm efficiency. A systematic approach to the development of

an optimization method, based entirely on the characteristics of the problem under consideration,

can result in an algorithm whose efficiency significantly outperforms conventional approaches.

In addition, this approach could explore theoretical relations between similar optimization

problems and utilize known efficient methods for one problem to address subproblems of the other.

For example, scheduling independent jobs on identical machines, known as P||Cmax in the three-filed

notation [5], Bin Packing Problem (BPP) and Multiple Subset Sum Problem (MSSP) [11] are 𝒩𝒫

problems that share a common theoretical background and can often be considered as dual problems

[8]. The correlation between these problems should be explored in both theoretical considerations

and the development of efficient solution methods. Determination of lower bounds is a very good

example of leveraging this correlation [2, 8].

Our main contribution is the development of Decomposition-based Iterative Stochastic

Transformation (DIST), an efficient heuristic algorithm for P||Cmax, that exploits correlation between

P||Cmax, BPP, and MSSP. Their mutual theoretical properties can improve performance of the

proposed algorithm and guarantee the optimality of the obtained solution given enough time. Our

approach employs a partitioning technique that attempts to iteratively improve the current P||Cmax

solution by solving its subproblems as the instances of MSSP. It starts with random partitions

1028

defining smaller subproblems as they have higher potential for improving the current solution. If the

current solution is not improved algorithm selects larger subproblems although potential to improve

the current solution steadily decreases. Thus, to not waste time and resources, the individual steps of

the algorithm are time limited. Nevertheless, DIST can provide high quality solutions within a short

execution time, as it is demonstrated by the experimental evaluation and comparison with the state-

of-the-art algorithm [4] on the same benchmark sets of instances.

The paper is organized in the following way. After a brief introduction, the MIP formulation of

all considered problems is provided and their analogy is discussed in Section 2. The proposed

algorithm is described in Section 3. Section 4 contains an experimental evaluation on the

benchmark instances from the relevant literature. Concluding remarks and directions for future

research are provided in Section 5.

2. FORMULATION OF RELATED OPTIMIZATION PROBLEMS

In this section we describe MSSP, P||Cmax, and BPP and provide their MIP formulations.

MSSP can be described as follows. Let 𝑊 = {1, … , 𝑔} be a given set of 𝑔 ∈ 𝑁 items, with

positive integer weights 𝑤 = {𝑤1, … , 𝑤𝑔}, and let 𝐾 = {1, … , 𝑘} represents a set of 𝑘 ∈ 𝑁 identical

knapsacks with capacity 𝑐 ∈ 𝑁. The objective is to select a subset of items that can be packed in the

knapsacks in such a way to maximize the total weight of selected items.

For a given 4-tuple (𝑊, 𝑤, 𝐾, 𝑐), mathematical programming formulation of MSSP is given by

the Integer Linear Program (ILP) in [1]:

 max ∑ ∑ 𝑤𝑗𝑥𝑖𝑗

𝑗∈𝑊𝑖∈𝐾

 (1)

 s.t. ∑ 𝑥𝑖𝑗𝑖∈K ≤ 1, 𝑗 ∈ 𝑊, (2)

 ∑ 𝑤𝑗𝑥𝑖𝑗𝑗∈𝑊 ≤ 𝑐, 𝑖 ∈ K, (3)

 𝑥𝑖𝑗 ∈ {0,1}, 𝑗 ∈ 𝑊, 𝑖 ∈ K. (4)

where 𝑥𝑖𝑗 takes value 1, if item 𝑗 is assigned to knapsack 𝑖, and 0 otherwise.

MSSP is a specialization of Multiple 0-1 Knapsack Problem and generalization of Subset Sum

Problem (SSP) [11].

When describing P||Cmax scheduling problem [9], a set 𝑀 = {1, … , 𝑚} of 𝑚 ∈ 𝑁 identical

independent machines, and a set 𝐽 = {1, … , 𝑛} of 𝑛 ∈ 𝑁 independent jobs with processing times

𝑝 = {𝑝1, … , 𝑝𝑛} should be given. Each job should be assigned to exactly one machine in such a way

to minimize the latest machine completion time (makespan) denoted by 𝐶𝑚𝑎𝑥 . Let us define 𝐶𝑖 as

the sum of processing times of jobs assigned to machine 𝑖. Then 𝐶𝑚𝑎𝑥 = max{ 𝐶1, … , 𝐶𝑖 , … , 𝐶𝑚}.

According to [12], P||Cmax for a given 3-tuple (𝐽, 𝑝, 𝑀) can be formulated as the following ILP:

 m𝑖𝑛 𝐶𝑚𝑎𝑥 (5)

 s.t. ∑ 𝑥𝑖𝑗𝑖∈M = 1, 𝑗 ∈ J, (6)

 ∑ 𝑝𝑗𝑥𝑖𝑗𝑗∈J ≤ 𝐶𝑚𝑎𝑥, 𝑖 ∈ M, (7)

 𝑥𝑖𝑗 ∈ {0,1}, 𝑖 ∈ M, 𝑗 ∈ J. (8)

where 𝑥𝑖𝑗 takes value 1, if job 𝑗 is assigned to machine 𝑖, and 0 otherwise.

1029

Theorem 1: P||Cmax for a given 3-tuple (𝐽, 𝑝, 𝑀) is equivalent to MSSP for 4-tuple (𝐽, 𝑝, 𝑀, 𝑐) in

which all jobs are used, and 𝑐 is minimal, i.e.:

 m𝑖𝑛 𝑐 (9)

 s.t. MSSP for (𝐽, 𝑝, 𝑀, 𝑐), (10)

 ∑ 𝑥𝑖𝑗i∈M = 1, 𝑗 ∈ J, (11)

 𝑥𝑖𝑗 ∈ {0,1}, 𝑗 ∈ J, 𝑖 ∈ M. (12)

Proof 1: Maximization required in (10), if feasible, under the constraints (11) will always return the

sum of all items, regardless the value of 𝑐. Constraints (11) are required to strengthen constraints (2)

and to ensure the constraints (6) are satisfied. Having included all items (jobs) in the selection, as it

is stated by constraints (11), constraints (3) reduce to constraints (7). After these reductions, 𝑐 can

be observed as 𝐶𝑚𝑎𝑥, and its minimization in (9) leads to the solution of P||Cmax. ∎

Next, we consider BPP, provide its description and MIP formulation. For a given bins capacity 𝑞,

and a set 𝑋 = {1, … , 𝑥} of 𝑥 ∈ 𝑁 items with positive weights 𝑦 = {𝑦1, … , 𝑦𝑥}, the goal of BPP is to

determine minimal number of bins 𝑏 ∈ 𝑁 such that each item can be assigned to exactly one bin

from the set of bins 𝐵 = {1, … , 𝑏}.

BPP can be considered as dual problem to P||Cmax [8] and can also be interpreted via MSSP,

providing suitable basis for our consideration.

ILP for BPP described by 3-tuple (𝑋, 𝑦, 𝑞) is formulated in [12]:

 m𝑖𝑛|𝐵| (13)

 s.t. ∑ 𝑥𝑖𝑗𝑖∈B = 1, 𝑗 ∈ X, (14)

 ∑ 𝑦𝑗𝑥𝑖𝑗𝑗∈X ≤ q, 𝑖 ∈ B, (15)

 𝑥𝑖𝑗 ∈ {0,1}, 𝑖 ∈ B, 𝑗 ∈ X. (16)

where 𝑥𝑖𝑗 takes value 1, if item 𝑗 is assigned to bin 𝑖, and 0 otherwise.

Theorem 2: BPP for a given 3-tuple (𝑋, 𝑦, 𝑞) is equivalent to MSSP described by 4-tuple
(𝑋, 𝑦, 𝐵, 𝑞) where all jobs are used, and |𝐵| is minimal, i.e.,

 m𝑖𝑛|𝐵| (17)

 s.t. MSSP for (𝑋, 𝑦, 𝐵, 𝑞), (18)

 ∑ 𝑥𝑖𝑗i∈B = 1, 𝑗 ∈ X, (19)

 𝑥𝑖𝑗 ∈ {0,1}, 𝑗 ∈ X, 𝑖 ∈ B. (20)

Proof 2: Like in Proof 1, maximization required in (18), if feasible, under the constraints (19) will

always return the sum of all items, regardless the value of 𝑞. Constraints (19) are required to

strengthen constraints (2) and to ensure that constraints (14) are satisfied. Having included all jobs

in the selection, as it is stated by constraints (19), constraints (3) reduce to constraints (15). After

these transformations 𝑐 can be observed as 𝑞, and its minimization in (17) provides a solution for

BPP. ∎

Based on the provided relationship between the considered problems, we can formulate our DIST

algorithm.

1030

3. DIST DESCRIPTION

Figure 1: DIST block diagram

1031

The basic idea of DIST is the divide and conquer strategy, i.e., solving a part of the problem with

an aim to improve the quality of the current solution. More precisely, the set of machines is

partitioned in two parts and the one containing the most heavily loaded machine is considered and

solved as an instance of MSSP. The only way to improve the current solution is to decrease the load

of the most heavily loaded machine. In our experience, iteratively applying this procedure can lead

to a high-quality solution in a short amount of time. Figure 1 shows the block diagram of DIST. The

DIST algorithm accepts the instance 𝐼 of the problem and the time limit for the timed parts. Time

limit is enforced within the operating system, and it can interrupt any action in the algorithm. In

Figure 1, the time limited parts are represented with a rectangle containing a clock in the lower right

corner. Main components of DIST algorithm are explained in the reminder of this section.

3.1. Lower bound strategies

The first very important step for performance, and the primary strategy for the solver's ability to

guarantee the optimality of the solution, is to find the best possible lower bound. Given an instance

of P||Cmax, lower bound 𝐿 is obtained as a maximum of several lower bounds from the literature.

With the assumption that jobs are sorted by processing time such that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛 trivial

lower bound is defined as 𝐿𝑇𝑉 = max{ 𝐿0, 𝐿1, 𝐿2, 𝐿ν}, where 𝐿0 = ⌈
1

𝑚
∑ 𝑝𝑗

𝑛
𝑗=1 ⌉, 𝐿1 = 𝑝1, 𝐿2 = 𝑝𝑚 +

𝑝𝑚+1, and 𝐿ν = ∑ 𝑝𝑗
𝑛
𝑗=𝑛−ν+1 , where ν = ⌈𝑛/𝑚⌉ [2]. 𝐿𝐷𝑀 [2], and 𝐿𝐻𝑆 [8] are based on BPP. More

complex one is 𝐿θ [2]. Every lower bound is improved using lifting procedure [6, 7], so we get 𝐿𝑇�̂�,

𝐿𝐷�̂�, 𝐿𝐻�̂�, and 𝐿θ̂. Finally, 𝐿 = max{𝐿𝑇�̂� , 𝐿𝐷�̂�, 𝐿𝐻�̂�, 𝐿θ̂}.

3.2. Upper bound strategies

The next step (Find quick S in Figure 1) considers finding initial solution, i.e., upper bound. It is

important to provide our algorithm with a reasonably good solution quickly, thus, we apply the

well-known longest-processing-time-first scheduling (𝐿𝑃𝑇). The principle is simple: as long as

there are unscheduled jobs, take the longest among them and assign to the least loaded machine -

earliest start (ES) scheduling rule. Approximation ratio of 𝐿𝑃𝑇 is
4

3
−

1

3𝑚
 [5].

In an improvement of 𝐿𝑃𝑇, the 𝑆𝐿𝐴𝐶𝐾 heuristic [3], the array of initially sorted jobs is divided

into 𝑚 tuples of approximately
𝑛

𝑚
 size. The tuples are sorted in non-increasing order according to

the difference between the longest and the shortest job and concatenated into a joint list of jobs that

are scheduled according to ES scheduling rule. Consequently, approximation ratio of 𝑆𝐿𝐴𝐶𝐾 is

improved to
4

3
−

1

3(𝑚−1)
 [3]. Finally, 𝑆 = argmin{𝐶𝑚𝑎𝑥

𝐿𝑃𝑇 , 𝐶𝑚𝑎𝑥
𝑆𝐿𝐴𝐶𝐾}.

3.3. Heuristic strategy

The main part of the algorithm is a binary search for a solution with the minimum makespan in

the interval [𝑙, 𝑟], initially set to [𝐿, 𝐶𝑚𝑎𝑥
𝑆 − 1], whose size is adjusted accordingly during the

search. The goal is to find a solution with makespan less than or equal to the middle value µ (see

Figure 1). For each value µ, the search is performed by timed iterative trials. Temporary solution

(𝑇) is set to 𝑆, 𝐸 is incremented until 𝐸 = 𝑚 − 1, and the transformation counter (𝜏) is initialized.

The goal is to improve 𝑇 by using an exact MSSP solver [15] on a subproblem containing the most

heavily loaded machine, 𝐸 − 1 randomly selected machines, and all jobs on them. Addressing

P||Cmax by SSP [7, 14] and MSSP [6] was limited to 2-machines subproblems. To the best of our

knowledge, we are the first to include more than two machines to create subproblems. After each

transformation, Improve procedure is applied to 𝑇 and 𝑆 is updated. Improve procedure is using

MSSP for 𝐸 = 2 where the second machine is chosen in sequence from all other machines and that

procedure is repeated until there is an improvement. If 𝐶𝑚𝑎𝑥
𝑆 ≤ µ, the search interval is adjusted and

algorithm proceeds to the next step. If the time limit is exceeded without at least one transformation

for the given 𝐸, the search for µ is unsuccessful and the left part of the interval must be discarded. If

1032

no solution is found for 𝐸 = 𝑚 − 1 but some transformations are performed, then there is a chance

to obtain an exact solution by solving the MSSP for all jobs and machines within a given time limit.

If the transformation is performed and a feasible solution is not found, a new lower bound can be

guaranteed.

4. EXPERIMENTAL EVALUATION

We evaluate DIST in comparison with state-of-the-art solver Improved Arc-Flow (IAF) [4].

Comparison is done on 700 instances with ratio
𝑛

𝑚
= 2 [13]. Our solver is tested using GCC version

10.4.0, Linux 4.15.0-143-generic, Ubuntu 18.04.5 LTS on Intel(R) Core(TM) i5-6400 CPU @

2.70GHz with 8GB RAM. IAF solver is tested by IAF authors using CPLEX 12.10 on Intel(R)

Core(TM) i7-4930K CPU @3.40 GHz and 34.0 GB of RAM. Obtained results enable us to ignore

the superiority of hardware resources used to execute IAF.

Table 1: DIST and IAF performance comparison on used benchmark instances

Solver

Performance

Time

[s]

Time to

Best [s]
Trans.

Trans. to

Best

Optimality

Guaranties [%]

Best

[%]

Number

of Tests

IAF (state of the art) 184.78 184.78 / / 100 100 1

DIST limit 0.06s 107.48 32.56 1069608 440121 78.71 96.64 30

Having in mind that DIST is a stochastic heuristic, it is run 30 times for all instances to obtain

statistical significance. Obtained results are provided in Table 1. The second and the third columns

show the sum of the total execution times and sum of times required to obtain the best solution,

respectively, for all 700 instances. Like for times, sum of the total number of performed

transformations and the sum of number of transformations until the best solution is found are

presented as Trans. and Trans. to Best. The percentage of instances for which algorithms can

guarantee optimality of solutions is shown in the next column. The penultimate column shows the

percentage of best solutions in all runs (700*30), while the last column shows the number of runs

per instance. For DIST we summed up the worst times and the worst numbers of transformations

out of the all the best provided solutions in 30 repetitions for each of 700 instances.

Both algorithms have solved all instances. Although it is not an exact solver, our heuristic can

guarantee the optimality of the solution in almost 79% of cases. As DIST achieved almost 97%

optimal solutions, it can be declared reliable heuristic in this experiment. DIST execution time is

strongly related to given time limits. For all tested instances, 0.06s time limit was enough to obtain

optimal solution. In comparison with IAF, DIST can find solutions about 6 times faster, and

complete search 40% faster. Most instances require significantly less than 0.06s for subproblem.

5. CONCLUSION

We considered a systematic approach to the development of an optimization method based on the

characteristics of the problem, exploring theoretical relations between similar optimization

problems, and utilizing known efficient methods for one problem to address subproblems of the

other. Our approach has been explained on the problem of scheduling independent jobs on identical

machines (P||Cmax) as a case study. The resulting efficient heuristic algorithm, named

Decomposition-based Iterative Stochastic Transformation (DIST), explores the analogy between

P||Cmax, Bin Packing Problem (BPP) and Multiple Subset Sum Problem (MSSP). We compared

DIST to state-of-the-art exact algorithm on benchmark instances from literature. As expected, DIST

1033

performed better w.r.t. total runtime while reaching the optimal solution for all instances. However,

even though DIST is heuristic algorithm, it guarantees optimality in almost 79% benchmark

instances.

As future work we plan to improve DIST performance by including new search mechanisms and

lower bounds and exploring more benchmark instances. As explored problems can be easily

transformed one into another, the same strategy can be used to develop efficient algorithms for any

of them and that could be another avenue of future work. Along the same lines, the proposed

approach could be applied to other sets of similar optimization problems.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Science, Technological Development and Innovations

of Republic of Serbia, agreements nos. 451-03-47/2023-01/200029 and 451-03-47/2023-01/

200122, Science Fund of Republic of Serbia under the project Advanced Artificial Intelligence

Techniques For Analysis And Design Of System Components Based On Trustworthy Blockchain

Technology (AI4TrustBC), and Penn State Great Valley Big Data lab. We thank Gharbi, Anis. and

Bamatraf, Khaled for providing IAF results.

REFERENCES

[1] Caprara, A., et al. (2000). The multiple subset sum problem. SIAM Journal on Optimization,

11(2), 308-319.

[2] Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks on identical parallel

processors. ORSA Journal on Computing, 7(2), 191-200.

[3] Della Croce, F., & Scatamacchia, R. (2020). The longest processing time rule for identical

parallel machines revisited. Journal of Scheduling, 23(2), 163-176.

[4] Gharbi, A., & Bamatraf, K. (2022). An Improved Arc Flow Model with Enhanced Bounds for

Minimizing the Makespan in Identical Parallel Machine Scheduling. Processes, 10(11), 2293.

[5] Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17(2), 416–429

[6] Haouari, M., & Jemmali, M. (2008). Tight bounds for the identical parallel machine‐scheduling

problem: Part II. International Transactions in Operational Research, 15(1), 19-34.

[7] Haouari, M., et al. (2006). Tight bounds for the identical parallel machine scheduling problem.

International Transactions in Operational Research, 13(6), 529-548.

[8] Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for

scheduling problems theoretical and practical results. Journal of the ACM, 34(1), 144-162.

[9] Lawrinenko, A. (2017). Identical parallel machine scheduling problems: structural patterns,

bounding techniques and solution procedures (Doctoral dissertation, Friedrich-Schiller-

Universität Jena).

[10] Maleš, U., et al. (2023). Controlling the Difficulty of Combinatorial Optimization Problems for

Fair Proof-of-Useful-Work-Based Blockchain Consensus Protocol. Symmetry, 15(1), 140.

[11] Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc.

[12] Mokotoff, E. (2004). An exact algorithm for the identical parallel machine scheduling problem.

European Journal of Operational Research, 152(3), 758-769.

[13] Mrad, M., & Souayah, N. (2018). An arc-flow model for the makespan minimization problem

on identical parallel machines. IEEE Access, 6, 5300-5307.

1034

[14] Ostojić, D., et al. (2022). Comparative Analysis of Heuristic Approaches to P|| Cmax, Proc.

11th International Conference on Operations Research and Enterprise Systems, ICORES 2022,

(virtual), Feb. 3-5, 2022, pp. 259-266.

[15] Pisinger, D., & Toth, P. (1998). Knapsack problems. Handbook of Combinatorial

Optimization: Volume1–3, 299-428.

