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Abstract: We develop Decomposition-based Iterative Stochastic Transformation (DIST), an efficient 

heuristic algorithm for a well-studied hard combinatorial optimization problem, scheduling 

independent jobs on identical machines, known as P||Cmax. DIST explores the relationship between 

P||Cmax, Bin Packing Problem, and Multiple Subset Sum Problem to provide high-quality solutions. 

DIST relies on a partitioning strategy and iteratively performs nondeterministic transformations of 

current solution thus it represents a stohastic search algorithm. It has a built-in mechanism to 

guarantee the optimality of the provided solution  and, given enough time, DIST can always solve a 

given instance to optimality. However, DIST exhibits very good performance within short execution 

time, as it is demonstrated by the experimental evaluation on the popular benchmark sets of 

instances. 

Keywords: combinatorial optimization, scheduling independent jobs on identical machines, 

problem duality, stochastic search, lower and upper bounds  

1. INTRODUCTION 

Recently, authors often use some ad hoc approaches when developing optimization algorithms. 

For example, they formulate a Mixed-Integer Programming (MIP) model, employ an off-the-shelf 

solver or use some standard paradigms (evolutionary algorithms, local search procedures based on 

metrics, etc.). Such approaches mostly disregard the a priori knowledge about the problem that can 

have a significant impact on the algorithm efficiency. A systematic approach to the development of 

an optimization method, based entirely on the characteristics of the problem under consideration, 

can result in an algorithm whose efficiency significantly outperforms conventional approaches.  

In addition, this approach could explore theoretical relations between similar optimization 

problems and utilize known efficient methods for one problem to address subproblems of the other. 

For example, scheduling independent jobs on identical machines, known as P||Cmax in the three-filed 

notation [5], Bin Packing Problem (BPP) and Multiple Subset Sum Problem (MSSP) [11] are 𝒩𝒫 

problems that share a common theoretical background and can often be considered as dual problems 

[8]. The correlation between these problems should be explored in both theoretical considerations 

and the development of efficient solution methods. Determination of lower bounds is a very good 

example of leveraging this correlation [2, 8].  

Our main contribution is the development of Decomposition-based Iterative Stochastic 

Transformation (DIST), an efficient heuristic algorithm for P||Cmax, that exploits correlation between 

P||Cmax, BPP, and MSSP. Their mutual theoretical properties can improve performance of the 

proposed algorithm and guarantee the optimality of the obtained solution given enough time. Our 

approach employs a partitioning technique that attempts to iteratively improve the current P||Cmax 

solution by solving its subproblems as the instances of MSSP. It starts with random partitions 
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defining smaller subproblems as they have higher potential for improving the current solution. If the 

current solution is not improved algorithm selects larger subproblems although potential to improve 

the current solution steadily decreases. Thus, to not waste time and resources, the individual steps of 

the algorithm are time limited. Nevertheless, DIST can provide high quality solutions within a short 

execution time, as it is demonstrated by the experimental evaluation and comparison with the state-

of-the-art algorithm [4] on the same benchmark sets of instances.   

The paper is organized in the following way. After a brief introduction, the MIP formulation of 

all considered problems is provided and their analogy is discussed in Section 2. The proposed 

algorithm is described in Section 3. Section 4 contains an experimental evaluation on the 

benchmark instances from the relevant literature. Concluding remarks and directions for future 

research are provided in Section 5. 

2. FORMULATION OF RELATED OPTIMIZATION PROBLEMS 

In this section we describe MSSP, P||Cmax, and BPP and provide their MIP formulations. 

MSSP can be described as follows. Let 𝑊 = {1, … , 𝑔} be a given set of 𝑔 ∈ 𝑁 items, with 

positive integer weights 𝑤 = {𝑤1, … , 𝑤𝑔}, and let 𝐾 = {1, … , 𝑘} represents a set of 𝑘 ∈ 𝑁 identical 

knapsacks with capacity 𝑐 ∈ 𝑁. The objective is to select a subset of items that can be packed in the 

knapsacks in such a way to maximize the total weight of selected items. 

For a given 4-tuple (𝑊, 𝑤, 𝐾, 𝑐), mathematical programming formulation of MSSP is given by 

the Integer Linear Program (ILP) in [1]: 

 

 max ∑ ∑ 𝑤𝑗𝑥𝑖𝑗

𝑗∈𝑊𝑖∈𝐾

 (1) 

 s.t.            ∑ 𝑥𝑖𝑗𝑖∈K ≤ 1,                                                             𝑗 ∈ 𝑊, (2) 

                                  ∑ 𝑤𝑗𝑥𝑖𝑗𝑗∈𝑊 ≤ 𝑐,                                                        𝑖 ∈ K, (3) 

 𝑥𝑖𝑗 ∈ {0,1},                                                    𝑗 ∈ 𝑊, 𝑖 ∈ K. (4) 

 

where 𝑥𝑖𝑗 takes value 1, if item 𝑗 is assigned to knapsack 𝑖, and 0 otherwise. 

MSSP is a specialization of Multiple 0-1 Knapsack Problem and generalization of Subset Sum 

Problem (SSP) [11].  

When describing P||Cmax scheduling problem [9], a set 𝑀 = {1, … , 𝑚} of 𝑚 ∈ 𝑁 identical 

independent machines, and a set 𝐽 = {1, … , 𝑛} of 𝑛 ∈ 𝑁 independent jobs with processing times 

𝑝 = {𝑝1, … , 𝑝𝑛} should be given. Each job should be assigned to exactly one machine in such a way 

to minimize the latest machine completion time (makespan) denoted by 𝐶𝑚𝑎𝑥 . Let us define 𝐶𝑖 as 

the sum of processing times of jobs assigned to machine 𝑖. Then 𝐶𝑚𝑎𝑥 = max{ 𝐶1, … , 𝐶𝑖 , … , 𝐶𝑚}. 

According to [12], P||Cmax for a given 3-tuple (𝐽, 𝑝, 𝑀) can be formulated as the following ILP:  

 

 m𝑖𝑛 𝐶𝑚𝑎𝑥 (5) 

 s.t.            ∑ 𝑥𝑖𝑗𝑖∈M = 1,                                                             𝑗 ∈ J, (6) 

                            ∑ 𝑝𝑗𝑥𝑖𝑗𝑗∈J ≤ 𝐶𝑚𝑎𝑥,                                                  𝑖 ∈ M, (7) 

 𝑥𝑖𝑗 ∈ {0,1},                                                     𝑖 ∈ M, 𝑗 ∈ J. (8) 

 

where 𝑥𝑖𝑗 takes value 1, if job 𝑗 is assigned to machine 𝑖, and 0 otherwise. 
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Theorem 1: P||Cmax for a given 3-tuple (𝐽, 𝑝, 𝑀) is equivalent to MSSP for 4-tuple (𝐽, 𝑝, 𝑀, 𝑐) in 

which all jobs are used, and 𝑐 is minimal, i.e.: 

 

 m𝑖𝑛 𝑐 (9) 

                     s.t.           MSSP   for    (𝐽, 𝑝, 𝑀, 𝑐),                                       (10) 

                       ∑ 𝑥𝑖𝑗i∈M = 1,                                                             𝑗 ∈ J, (11) 

 𝑥𝑖𝑗 ∈ {0,1},                                                    𝑗 ∈ J, 𝑖 ∈ M. (12) 

 

Proof 1: Maximization required in (10), if feasible, under the constraints (11) will always return the 

sum of all items, regardless the value of 𝑐. Constraints (11) are required to strengthen constraints (2) 

and to ensure the constraints (6) are satisfied. Having included all items (jobs) in the selection, as it 

is stated by constraints (11), constraints (3) reduce to constraints (7). After these reductions, 𝑐 can 

be observed as 𝐶𝑚𝑎𝑥, and its minimization in (9) leads to the solution of P||Cmax.    ∎ 
 

Next, we consider BPP, provide its description and MIP formulation. For a given bins capacity 𝑞, 

and a set 𝑋 = {1, … , 𝑥} of 𝑥 ∈ 𝑁 items with positive weights 𝑦 = {𝑦1, … , 𝑦𝑥}, the goal of BPP is to 

determine minimal number of bins 𝑏 ∈ 𝑁 such that each item can be assigned to exactly one bin 

from the set of bins 𝐵 = {1, … , 𝑏}. 

BPP can be considered as dual problem to P||Cmax [8] and can also be interpreted via MSSP, 

providing suitable basis for our consideration. 

ILP for BPP described by 3-tuple (𝑋, 𝑦, 𝑞) is formulated in [12]: 

 

 m𝑖𝑛|𝐵| (13) 

 s.t.            ∑ 𝑥𝑖𝑗𝑖∈B = 1,                                                             𝑗 ∈ X, (14) 

                              ∑ 𝑦𝑗𝑥𝑖𝑗𝑗∈X ≤ q,                                                        𝑖 ∈ B, (15) 

 𝑥𝑖𝑗 ∈ {0,1},                                                    𝑖 ∈ B, 𝑗 ∈ X. (16) 

 

where 𝑥𝑖𝑗 takes value 1, if item 𝑗 is assigned to bin 𝑖, and 0 otherwise. 

 

Theorem 2: BPP for a given 3-tuple (𝑋, 𝑦, 𝑞) is equivalent to MSSP described by 4-tuple 
(𝑋, 𝑦, 𝐵, 𝑞) where all jobs are used, and |𝐵| is minimal, i.e., 

 

 m𝑖𝑛|𝐵| (17) 

                     s.t.          MSSP   for    (𝑋, 𝑦, 𝐵, 𝑞),                                       (18) 

                       ∑ 𝑥𝑖𝑗i∈B = 1,                                                             𝑗 ∈ X, (19) 

 𝑥𝑖𝑗 ∈ {0,1},                                                    𝑗 ∈ X, 𝑖 ∈ B. (20) 

 

Proof 2: Like in Proof 1, maximization required in (18), if feasible, under the constraints (19) will 

always return the sum of all items, regardless the value of 𝑞. Constraints (19) are required to 

strengthen constraints (2) and to ensure that constraints (14) are satisfied. Having included all jobs 

in the selection, as it is stated by constraints (19), constraints (3) reduce to constraints (15). After 

these transformations 𝑐 can be observed as 𝑞, and its minimization in (17) provides a solution for 

BPP. ∎ 
   

Based on the provided relationship between the considered problems, we can formulate our DIST 

algorithm. 
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3. DIST DESCRIPTION 

 

 

 

 

 

 

Figure 1: DIST block diagram 
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The basic idea of DIST is the divide and conquer strategy, i.e., solving a part of the problem with 

an aim to improve the quality of the current solution. More precisely, the set of machines is 

partitioned in two parts and the one containing the most heavily loaded machine is considered and 

solved as an instance of MSSP. The only way to improve the current solution is to decrease the load 

of the most heavily loaded machine. In our experience, iteratively applying this procedure can lead 

to a high-quality solution in a short amount of time. Figure 1 shows the block diagram of DIST. The 

DIST algorithm accepts the instance 𝐼 of the problem and the time limit for the timed parts. Time 

limit is enforced within the operating system, and it can interrupt any action in the algorithm. In 

Figure 1, the time limited parts are represented with a rectangle containing a clock in the lower right 

corner. Main components of DIST algorithm are explained in the reminder of this section. 

 

3.1. Lower bound strategies 

The first very important step for performance, and the primary strategy for the solver's ability to 

guarantee the optimality of the solution, is to find the best possible lower bound. Given an instance 

of P||Cmax, lower bound 𝐿 is obtained as a maximum of several lower bounds from the literature. 

With the assumption that jobs are sorted by processing time such that 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑛 trivial 

lower bound is defined as 𝐿𝑇𝑉 = max{ 𝐿0, 𝐿1, 𝐿2, 𝐿ν}, where 𝐿0 = ⌈
1

𝑚
∑ 𝑝𝑗

𝑛
𝑗=1 ⌉, 𝐿1 = 𝑝1, 𝐿2 = 𝑝𝑚 +

𝑝𝑚+1, and 𝐿ν = ∑ 𝑝𝑗
𝑛
𝑗=𝑛−ν+1 , where ν = ⌈𝑛/𝑚⌉ [2]. 𝐿𝐷𝑀 [2], and 𝐿𝐻𝑆 [8] are based on BPP. More 

complex one is 𝐿θ [2]. Every lower bound is improved using lifting procedure [6, 7], so we get 𝐿𝑇�̂�, 

𝐿𝐷�̂�, 𝐿𝐻�̂�, and 𝐿θ̂. Finally, 𝐿 = max{𝐿𝑇�̂� , 𝐿𝐷�̂�, 𝐿𝐻�̂�, 𝐿θ̂}. 

3.2. Upper bound strategies 

The next step (Find quick S in Figure 1) considers finding initial solution, i.e., upper bound. It is 

important to provide our algorithm with a reasonably good solution quickly, thus, we apply the 

well-known longest-processing-time-first scheduling (𝐿𝑃𝑇). The principle is simple: as long as 

there are unscheduled jobs, take the longest among them and assign to the least loaded machine - 

earliest start (ES) scheduling rule. Approximation ratio of 𝐿𝑃𝑇 is 
4

3
−

1

3𝑚
 [5]. 

In an improvement of 𝐿𝑃𝑇, the 𝑆𝐿𝐴𝐶𝐾 heuristic [3], the array of initially sorted jobs is divided 

into 𝑚 tuples of approximately 
𝑛

𝑚
 size. The tuples are sorted in non-increasing order according to 

the difference between the longest and the shortest job and concatenated into a joint list of jobs that 

are scheduled according to ES scheduling rule. Consequently, approximation ratio of 𝑆𝐿𝐴𝐶𝐾 is 

improved to 
4

3
−

1

3(𝑚−1)
 [3]. Finally, 𝑆 = argmin{𝐶𝑚𝑎𝑥

𝐿𝑃𝑇  , 𝐶𝑚𝑎𝑥
𝑆𝐿𝐴𝐶𝐾}.  

3.3. Heuristic strategy 

The main part of the algorithm is a binary search for a solution with the minimum makespan in 

the interval [𝑙, 𝑟], initially set to  [𝐿, 𝐶𝑚𝑎𝑥
𝑆 − 1], whose size is adjusted accordingly during the 

search. The goal is to find a solution with makespan less than or equal to the middle value µ (see 

Figure 1). For each value µ, the search is performed by timed iterative trials. Temporary solution 

(𝑇) is set to 𝑆, 𝐸 is incremented until 𝐸 = 𝑚 − 1, and the transformation counter (𝜏) is initialized. 

The goal is to improve 𝑇 by using an exact MSSP solver [15] on a subproblem containing the most 

heavily loaded machine, 𝐸 − 1 randomly selected machines, and all jobs on them. Addressing 

P||Cmax by SSP [7, 14] and MSSP [6] was limited to 2-machines subproblems. To the best of our 

knowledge, we are the first to include more than two machines to create subproblems. After each 

transformation, Improve procedure is applied to 𝑇 and 𝑆 is updated. Improve procedure is using 

MSSP for 𝐸 = 2 where the second machine is chosen in sequence from all other machines and that 

procedure is repeated until there is an improvement. If 𝐶𝑚𝑎𝑥
𝑆 ≤ µ, the search interval is adjusted and 

algorithm proceeds to the next step. If the time limit is exceeded without at least one transformation 

for the given 𝐸, the search for µ is unsuccessful and the left part of the interval must be discarded. If 
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no solution is found for 𝐸 = 𝑚 − 1 but some transformations are performed, then there is a chance 

to obtain an exact solution by solving the MSSP for all jobs and machines within a given time limit. 

If the transformation is performed and a feasible solution is not found, a new lower bound can be 

guaranteed.  

4. EXPERIMENTAL EVALUATION 

We evaluate DIST in comparison with state-of-the-art solver Improved Arc-Flow (IAF) [4]. 

Comparison is done on 700 instances with ratio 
𝑛

𝑚
= 2 [13]. Our solver is tested using GCC version 

10.4.0, Linux 4.15.0-143-generic, Ubuntu 18.04.5 LTS on Intel(R) Core(TM) i5-6400 CPU @ 

2.70GHz with 8GB RAM. IAF solver is tested by IAF authors using CPLEX 12.10 on Intel(R) 

Core(TM) i7-4930K CPU @3.40 GHz and 34.0 GB of RAM. Obtained results enable us to ignore 

the superiority of hardware resources used to execute IAF.  

 

Table 1: DIST and IAF performance comparison on used benchmark instances 

Solver 

Performance 

Time 

[s] 

Time to 

Best [s] 
Trans. 

Trans. to 

Best 

Optimality 

Guaranties [%] 

Best 

[%] 

Number 

of Tests 

IAF (state of the art) 184.78 184.78 / / 100 100 1 

DIST limit 0.06s 107.48 32.56 1069608 440121 78.71 96.64 30 

 

Having in mind that DIST is a stochastic heuristic, it is run 30 times for all instances to obtain 

statistical significance. Obtained results are provided in Table 1. The second and the third columns 

show the sum of the total execution times and sum of times required to obtain the best solution, 

respectively, for all 700 instances. Like for times, sum of the total number of performed 

transformations and the sum of number of transformations until the best solution is found are 

presented as Trans. and Trans. to Best. The percentage of instances for which algorithms can 

guarantee optimality of solutions is shown in the next column. The penultimate column shows the 

percentage of best solutions in all runs (700*30), while the last column shows the number of runs 

per instance. For DIST we summed up the worst times and the worst numbers of transformations 

out of the all the best provided solutions in 30 repetitions for each of 700 instances. 

Both algorithms have solved all instances. Although it is not an exact solver, our heuristic can 

guarantee the optimality of the solution in almost 79% of cases. As DIST achieved almost 97% 

optimal solutions, it can be declared reliable heuristic in this experiment. DIST execution time is 

strongly related to given time limits. For all tested instances, 0.06s time limit was enough to obtain 

optimal solution. In comparison with IAF, DIST can find solutions about 6 times faster, and 

complete search 40% faster. Most instances require significantly less than 0.06s for subproblem. 

5. CONCLUSION 

We considered a systematic approach to the development of an optimization method based on the 

characteristics of the problem, exploring theoretical relations between similar optimization 

problems, and utilizing known efficient methods for one problem to address subproblems of the 

other. Our approach has been explained on the problem of scheduling independent jobs on identical 

machines (P||Cmax) as a case study. The resulting efficient heuristic algorithm, named 

Decomposition-based Iterative Stochastic Transformation (DIST), explores the analogy between 

P||Cmax, Bin Packing Problem (BPP) and Multiple Subset Sum Problem (MSSP). We compared 

DIST to state-of-the-art exact algorithm on benchmark instances from literature. As expected, DIST 
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performed better w.r.t. total runtime while reaching the optimal solution for all instances. However, 

even though DIST is heuristic algorithm, it guarantees optimality in almost 79% benchmark 

instances.  

As future work we plan to improve DIST performance by including new search mechanisms and 

lower bounds and exploring more benchmark instances. As explored problems can be easily 

transformed one into another, the same strategy can be used to develop efficient algorithms for any 

of them and that could be another avenue of future work. Along the same lines, the proposed 

approach could be applied to other sets of similar optimization problems.  
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