
Fixed Set Search Applied to the Max-Cut Problem
Irina Šević

Faculty of Mathematics
University of Belgrade

Belgrade, Serbia
isevic.37@gmail.com

Raka Jovanovic
Qatar Environment and

Energy Research Institute
Hamad bin Khalifa University

Doha, Qatar
rjovanovic@hbku.edu.qa

Dragan Urošević, Tatjana Davidović
Mathematical Institute,

Serbian Academy of Science and Arts
Belgrade, Serbia

{draganu,tanjad}@turing.mi.sanu.ac.rs

Abstract—The Max-Cut Problem (MCP) is a classical NP-
hard combinatorial optimization problem for graph partitioning,
which has many applications such as optimizing electrical grids,
or wireless sensor networks. In the context of this paper,
the fixed set search (FSS) which is novel metaheuristic that
uses a population-based approach is applied for solving the
MCP. Initially, the greedy randomized adaptive search proce-
dure (GRASP) is formulated to address the given problem.
Subsequently, the FSS incorporates a learning procedure into
the GRASP by identifying common elements within high-quality
solutions. The primary benefit of this metaheuristic is the
simplicity of implementation. The algorithms are tested on
standard benchmark instances. The conducted computational
experiments validate that the learning procedure of the FSS
enhances the effectiveness of the base GRASP method, and
outperforms other population based metaheuristics that include
local search procedures like the AntCut and the hierarchical
social metaheuristics.

Index Terms—Graph partitioning, population-based meta-
heuristics, learning mechanisms, optimizing electrical microgrids,
optimizing wireless sensor network

I. Introduction

The Max-Cut Problem (MCP) is an optimization challenge
that involves partitioning the nodes of a graph into two sets
to maximize the number of edges crossing between the two
sets. It has a wide range of applications like VLSI circuit
design [1], image segmentation [2] and statistical physics [3].
In the recent years, it has been applied for optimization of
electrical grids, since they can be modeled as a graphs with
nodes representing power generation points, such as wind
turbines and solar panels, and edges representing transmission
lines. The MCP can be used to determine the optimal way
to partition the network. For instance, the MCP has proven
highly effective in modeling and optimizing microgrids, in the
presence of distributed energy resources [4] or the integration
of charging infrastructure for electric vehicles (EVs) [5]. An-
other important application of the MCP is optimizing wireless
sensor networks [6], [7] which can be of high relevance to
smartgrid monitoring.

The MCP is among the most investigated combinatorial
optimization problems and is one of Karp’s 21 NP-complete
problems [8]. Due to the NP-hardness of the MCP, many
heuristic and metaheuristic methods have been created for
finding near optimal solutions. In [9], a randomized greedy
heuristic and swap based local search have been proposed.

In the same paper, this basic approach is extend to the
greedy randomized adaptive search procedure (GRASP), vari-
able neighborhood search (VNS) and combined with path-
relinking. In [10] an overview of several greedy heuristics is
given. It is important to mention that an extensive analysis of
the effectiveness of such heuristics for the MCP is provided
in [11].

The MCP has also been addressed using single solution
metaheuristics like simulated annealing and tabu search [12],
[13]. Metaheuristics integrating population-based approaches
alongside local searches have demonstrated remarkable effec-
tiveness in addressing the MCP, like ant colony optimization
[14], artificial bee colony algorithm [15] and approaches based
on the genetic algorithms [16]–[18]. Other population based
metaheuristics have also proven effective for the MCP, e.g.
particle swarm optimization [19], scatter search [20], harmony
search [21], etc. From the extensive research on the MCP, it is
notable that it has been used in developing approaches based
on neural networks [22] and graph neural networks [23].

The Fixed Set Search (FSS) has found successful applica-
tion across various combinatorial problems including the trav-
eling salesman problem [24], machine scheduling [25], clique
partitioning problem [26] and others. It has also been success-
fully extend to bi-objective problems [27] and a matheuristic
setting [28]. The FSS is a population-based metaheuristic
with an integrated local search, that is particularly suitable
for solving the MCP, given the success of local search-based
methods. FSS enhances the GRASP by adding a learning
procedure, which focuses on elements that commonly arise in
high-quality solutions, termed the ”fixed set”. This approach
aims to generate solutions that incorporate these elements, with
computational effort directed at completing partial solutions.
In this paper, we explore the application of the FSS to
the MCP. The performed computational experiments suggest
that the FSS competes effectively with other metaheuristics
incorporating a local search component.

The structure of the paper is outlined as follows: Section
II contains the formulation of the MCP. The next section is
dedicated to solving the MCP using the greedy algorithm
(Section III). The following two section are focused on the
local search (Section IV) and the GRASP algorithm (Section
V). Section VI provides details of the FSS algorithm. Section
VII presents the outcomes of the carried out computational

2024 IEEE 8th Energy Conference (ENERGYCON)

979-8-3503-8215-0/24/$31.00 ©2024 IEEE

experiments, along with their analysis. Finally, the paper ends
with concluding remarks and references.

II. Formulation of theMax-Cut Problem

The formal definition of MCP can be stated as follows:
Consider an undirected graph G = (V, E), where V is a set
of vertices and E is a set of edges. In addition, each edge
(i, j) ∈ E, i, j ∈ V , has an assigned integer weight wi j. The goal
of the MCP is to divide the set of vertices into two subsets, S
and S c = V \ S for which the sum of the weights of the edges
with one vertex in S and the other in S c is maximized. This
set of edges is commonly called the cut, and is fully specified
by the set S . To formally, specify the MCP, let us first define
the function w(S 1, S 2) for two vertex sets S 1 and S 2.

w(S 1, S 2) =
∑

(i, j)∈E|i∈S 1, j∈S 2

wi j (1)

In Eq. (1) the w(S 1, S 2) is equal to the sum of all weights
of all edges (i, j) where i ∈ S 1 and j ∈ S 2. To simplify the
notation, let’s introduce the function w(S) = w(S , S c), for a set
of vertices S ⊂ V . The objective of MCP is to find the subset
of vertices S that maximizes the value of w(S). A graphical
illustration of the MCP can be seen in Fig. 1.

B

C

A

G

E

D

F 5

46

5

3

3

1

3

6

2

6
2

1

Fig. 1. Depiction of a solution to a MCP instance. The nodes of the two
subsets S and S c are colored white and gray, respectively. The values on
the edges represent edge weights. The black color is used for edges that are
included in the cut (edges having one node in S and the other in S c), while
gray dashed ones are not included in the cut. The objective function’s value
is w(S) = 34.

III. Greedy constructive algorithm

The concept behind the greedy algorithm involves starting
with an initial partial solution S = (S 1, S 2). Let this partial
solution consist of sets S 1 = {u} and S 2 = {v}, where the edge
(u, v) ∈ E has the maximum weight wuv. This partial solution
is iteratively expand by adding a vertex v ∈ V \ (S 1 ∪ S 2) to
one of the disjoint sets S 1 or S 2 until S 1∪S 2 = V . In relation,
let us define V ′ = V \ (S 1 ∪ S 2) as the set of vertices that are
not yet included in the partial solutions (S 1, S 2). At this point,
we can define the list of candidates for expanding the partial
solution (S 1, S 2) using the following equation.

C(S 1, S 2) = {(v, S) | v ∈ V ′ ∧ S ∈ {S 1, S 2}} (2)

The list of candidates consists of pairs (v, S), where v ∈ V ′

and S ∈ {S 1, S 2}, with the meaning that vertex v is added to
vertex set S . To simplify the notation in the further text, let
us define the following function

d(S) =
{

S 1 S = S 2
S 2 S = S 1

(3)

At each iteration of the greedy algorithm, the partial solution
(S 1, S 2) is extended by incorporating the candidate (v, S),
resulting in a new partial solution with the maximum weight
for the cut. Consequently, the heuristic function used in the
greedy algorithm for a candidate (v, S) can be defined as
follows.

h(v, S) =
∑

u∈d(S)

wuv (4)

Eq.(4) simply states that the desirability of adding vertex v
to vertex set S equals the sum of weights across all edges
connecting vertex v to the vertices within d(S). Now, in the
greedy algorithm at each iteration, the candidate (v, S) having
the maximal value of h(v, S) is selected for expanding the
partial solution.

To integrate the greedy algorithm into the GRASP meta-
heuristic, it must include randomization. This is commonly
accomplished by employing a restricted candidate list (RCL)
approach. The idea of the RCL is that, in each iteration of the
greedy algorithm, the partial solution is not expanded with the
candidate corresponding to the largest value of the heuristic
function. Instead, one of the candidates, identified as good
enough according to the RCL, is selected randomly.

In the case of the MCP, randomization is introduced through
the following procedure. We start with a partial solution S 1 =

{u} and S 2 = {v}, where the edge (u, v) ∈ E is one of the edges
with the maximum weight.

Algorithm 1 Construction of greedy randomized solution
1: procedure GreedyRandomizedConstruction(α, K)
2: u, v← SelectRandomMaxEdge(K)
3: S 1 ← {u}, S 2 ← {v}
4: while V , S 1 ∪ S 2 do
5: µ← CalculateThreashold(S 1, S 2,w∗,w∗, α)
6: RCL← MakeRCL(µ)
7: Set (v, S) to random element of RCL
8: if S = S 1 then
9: S 1 ← S 1 ∪ {v}

10: else
11: S 2 ← S 2 ∪ {v}
12: end if
13: end while
14: return S 1, S 2
15: end procedure

The RCL is generated using the method proposed in [29],
which is briefly recalled here. Let us define RCL as a list of all
candidates (v, S) that have the heuristic value h(v, S) greater
than or equal to a threshold µ = w∗ +α(w∗ −w∗), where α is a

random value uniformly selected from the [0, 1] interval and
w∗ and w∗ are defined as follows:

w∗ = min
(v,S)∈C(S 1,S 2)

h(v, S) (5)

w∗ = max
(v,S)∈C(S 1,S 2)

h(v, S) (6)

In practice this means, that w∗ and w∗ are equal to the
minimal and maximal value of the heuristic function of all
the candidates for expansion, respectively.

The proposed randomized greedy algorithm is best under-
stood by observing the pseudo-code given in Alg. 1. The first
step in Alg. 1 is to find an initial cut by randomly selecting
an edge (u, v) amongst the K with the maximal weight. In the
main loop, we start with updating the value of the threshold
µ for the RCL using the function CalculateThreashold. Next,
the RCL is generated based on µ, a random candidate (v, S)
is selected, and it is used to expand the partial solution. This
process is repeated until all vertices are allocated to one of the
subsets. Note that the randomized greedy algorithm uses α as
a parameter that specifies the level of randomness.

IV. Local search

The concept behind the local search is to start from a
candidate solution (S 1, S 2) and see if moving a vertex v from
its current subset S to the other subset d(S) results in a solution
of higher quality. To formally specify this procedure, let us
define the function Move(S 1, S 2, v), for solution (S 1, S 2) and
vertex v that returns the new solution (S ′1, S

′
2) where the vertex

v is moved from the current subset S to the subset d(S). To
be exact,

• S ′1 = S 1 \ {v}, S ′2 = S 2 ∪ {v}, if v ∈ S 1
• S ′2 = S 2 \ {v}, S ′1 = S 1 ∪ {v}, if v ∈ S 2.

Next, let us define the function Imp(S 1, S 2) for a solution
(S 1, S 2) that returns the set of all vertices v ∈ V such that
w(Move(S 1, S 2, v)) is greater than w(S 1, S 2). In Alg. 2 the
pseudo-code for the proposed local search procedure is shown
using this function. Instead of an exhaustive search over all
elements identified by the function Imp(S 1, S 2), a random
vertex is selected, the current solution is improved by its
movement from one subset to the other, and Imp(S 1, S 2) is
invoked to update the set of vertices that lead to the new
improvements. This process is iterated until no additional
improvement can be attained.

Algorithm 2 Local search
1: procedure LocalSearch(S 1, S 2)
2: while Imp(S 1, S 2) , ∅ do
3: Set v to random element of Imp(S 1, S 2)
4: (S 1, S 2)← Move(S 1, S 2, v)
5: end while
6: return S 1, S 2
7: end procedure

V. GRASP
The GRASP metaheuristic operates by iteratively employ-

ing the randomized greedy algorithm to generate solutions,
followed by the application of a local search to refine each of
them. This is best understood by observing the pseudo-code
given in Alg. 3. Within the main loop, the initial step is ran-
domly selecting the value of variable α that is used to specify
the level of randomness of the greedy construction algorithm
in that iteration. The next step is generating a feasible solution
S ol using the function GreedyRandomizedConstruction(α, K).
After that the local search is applied to that solution using
the function LocalSearch(S ol). The final step is checking if
a new best solution has been acquired. This procedure is
repeated until a maximal number of iterations (maxitr) has
been reached.

Algorithm 3 GRASP
1: procedure GRASP(maxitr, K)
2: BestS ol← ∅
3: for k = 1 : maxitr do
4: α← Random(0, 1)
5: S ol← GreedyRandomizedConstruction(α, K)
6: S ol← LocalSearch(S ol)
7: UpdateSolution(BestS ol, S ol)
8: end for
9: return BestS ol

10: end procedure

VI. Fixed Set Search
The FSS is an extension of the GRASP metaheuristic,

which adds a learning mechanism based on identified common
elements in high quality solutions. In the case of the MCP,
these elements correspond to pairs (v, i) consisting of vertices
v ∈ V and their partitions i ∈ {1, 2}. Such common elements
are used to generate new solutions by putting vertices in the
corresponding partitions. The FSS involves constructing an
initial population, generating fixed sets F, iteratively creating
new solutions by employing the learning mechanism that
exploits common elements and updating the set of high-quality
solutions.

Let us define the following notation. A solution is a set of
pairs (v, i) for v ∈ V and i ∈ {1, 2}, where (v, i) means that
v ∈ S i. In this formulation, each solution S ol ⊆ V × {1, 2}.
Note that this representation is equivalent to the one used in
the previous sections. Let S be the initial population, i.e. a set
of all generated solutions. We define Sn = {S ol1, .., S oln} ⊆ S
as the set of the best n generated solutions.

The procedure for generating a fixed set consist of the
following steps. A base solution B is selected randomly from
Sn. If the fixed set F is a subset of B, it holds the potential
to generate a feasible solution of equal or superior quality
compared to B. Moreover, F can include any number of
elements from B. The concept behind FSS is to incorporate
into F those elements that are the most frequent in some
group of high-quality solutions Sn. Let Skn ⊆ Sn denote the

set of k solutions randomly chosen from Sn. Finally, fixed
sets customized for the MCP can be effectively constructed
by using the previously defined components.

For an element (v, i) and a solution S ol ⊆ V × {1, 2}, let
us define the function C((v, i)), S ol) which is equal to 1 if
(v, i) ∈ S ol and equal to 0 otherwise. Let us define the func-
tions O((v, i),Skn) which tallies the number of occurrences of
element (v, i) in the solutions within Skn, using the expression:

O(v,Skn) =
∑

S ol∈Skn

C((v, i), S ol). (7)

Note that, in the implementation of the function O(v,Skn),
the symmetry of a solutions A1 = (S 1, S 2) and A2 = (S 2, S 1)
needs to be addressed. Namely, if |A1 ∩ B| > |A2 ∩ B| and the
representation in the form of a set of elements is used, the
solution A1 is used when calculating the function C, and vice
versa. In practice, this means that the set A having a higher
level of similarity with the base solution B is selected.

As mentioned earlier, fixed sets should contain elements
that frequently occur in the set of high-quality solutions.
Consequently, a fixed set F is a subset of B consisting of
the elements (v, i), where v ∈ V and i ∈ {1, 2}, with the largest
values of O((v, i),Skn). Such fixed sets F can be generated
with a specified cardinality S ize. We denote this process as
the function F = MakeFixedSet(B,Skn, S ize).

A. Randomized greedy algorithm with pre-selected elements

One of the main components of the FSS is a generation
of new solutions containing elements from the fixed set. This
can be achieved by the adaptation of the greedy randomized
construction algorithm discussed in Section III. Let F be the
pre-selected set of elements, i.e. a set of vertices paired with
their partition. Instead of initializing the partitions with only
two vertices (corresponding to one of the maximum weighted
edges), the initial solution begins with the partition of vertices
v to i for each (v, i) ∈ F. To distinguish this version from the
regular greedy randomized construction algorithm, we denote
it as GreedyRandomizedFixed(α, F).

B. Learning mechanism

In this section, we describe the FSS learning mechanism,
and how it gains experience from previous solutions. First, we
use GRASP for exploring the solution space and generate the
initial population S containing N solutions. We can easily find
Sn, n ≤ N, during this process. Secondly, the FSS iteratively
generates solutions, by creating a fixed set F of cardinality
S ize using past solutions, and generating a new solution S ol
using F and the randomized greedy algorithm. Then, the local
search improves S ol. S ol is used to update the set Sn and
the best found solution, if it is better than the previous best.
This procedure continues iteratively until a stopping criterion
is reached.

The fixed set F is produced by utilizing a base solution
B and a set of test solutions Skn. We set the the minimum
allowed value for it’s size, and incrementally increase it after
M iterations without finding a new solution good enough to

be added to Sn. We avoid repetitive solutions by setting an
upper bound on the size of the fixed set |F|. The size is
reset to its minimum allowed value if it reaches this bound
during stagnation. This procedure is repeated until the stopping
criterion is reached.

It’s crucial to emphasize that it is possible to construct
equivalent solutions, i.e. solutions with partitions (S 1, S 2) and
(S 2, S 1), which negatively effects the diversity of solution in
Sn. To avoid this kind of symmetry, after generating each
solution S 1 and S 2 are swapped such that |S 1| < |S 2| holds.

The sizes of the fixed sets within the FSS learning mecha-
nism are determined relative to size of the base solutions. In
our implementation, an array of permissible sizes is defined
as follows:

S izes[i] =
⌊
(1 − βi+1) · |V |

⌋
(8)

where β ∈ (0, 1). The upper limit for the fixed set’s size must
meet the condition |V | − S izes[i] ≥ s for a predetermined
number s. In Alg. 4, the pseudo-code for the implemented
Fixed Set Search is shown.

Algorithm 4 Fixed Set Search
1: procedure FSS(α, n, k, M, N, β, s)
2: S izes← InitializeSizes(β,s)
3: GRASP(N)
4: i← 0
5: while not(stopping criterion) do
6: B← SelectRandom(Sn)
7: Skn ← SelectRandomK(Sn, k)
8: F ← MakeFixedSet(B,Skn, S izes[i])
9: S ol← GreedyRandomizedFixed(α, F)

10: S ol← LocalSearch(S ol)
11: Sn ← UpdateSn(Sn, S ol)
12: if S ol is better than S olbest then
13: S olbest ← S ol
14: end if
15: if Sn has not changed in the last M iterations then
16: i← i + 1 (or i← 0 if i =Size(S izes))
17: end if
18: end while
19: end procedure

First, in this algorithm, the sizes of fixed sets are ini-
tialized using equation (8) based on input parameters β
and s. The size of the current fixed set is represented as
S izes[i]. The starting population of solutions S is generated
by executing N iterations of the basic GRASP algorithm
before the FSS procedure starts. Iterations of the main loop
are executed until a stopping criterion is reached, and each
iteration consists of the following steps: first, a base solution
B and a set of k solutions Skn are chosen randomly from
the set Sn. Secondly, a fixed set F is generated using the
function MakeFixedSet(B,Skn, S izes[i]). Next, a new solution
S ol is created using the randomized greedy algorithm with
pre-selected elements GreedyRandomizedFixed(α, F), and im-
proved by local search. Then, the algorithm checks if S ol is

one of the best n solutions and updates Sn if it is. It also
updates the best solution if needed. If stagnation occurs, i.e.
no solution is added to Sn after M iterations, the index i which
controls the size of the fixed set is increased. This equals to
the subsequent, larger, element in the S izes array. If S izes[i]
already denotes the final and largest size, i is reset to 0. The
used stopping criterion is that either a time limit or a maximal
number of iterations is reached.

VII. Results

We compare the implemented FSS and GRASP methods
to each other and to the AntCut [14] and the Hierarchical
Social (HS) [16] metaheuristics for the MCP, because they
are population methods with a local search. Precisely, the
comparison is done based on the best known solutions (BKS):
the table with results contains the differences between BKS
and the solutions acquired by each of the compared methods.
The implementation of the FSS and the GRASP is done in
C++, compiled with g++ (9.4.0) compiler, and executed on
a computer running Ubuntu 20.04.6 LTS with an Intel(R)
Celeron(R) CPU 4205U operating at 1.80GHz × 2 and 120 GB
of memory. The FSS and the GRASP have been independently
run 10 times with varying seeds for the random number
generator. The analysis includes examining both the maximum
and average values of the obtained objective function values.

The following values of the parameters, which have been se-
lected empirically, are used. The value α needed for generating
the RCL is selected uniformly random from [0, 1]. The initial
population of solutions S is created within N = 100 GRASP
iterations. The FSS stagnation criterion is set to M = 10
iterations, while n = 50 best solutions are kept as a reference.
To generate the set of test solutions Skn, k is randomly selected
from the set {5, 6, 7, 8, 9, 10} in each iteration. The value 0.5
is used for β, which defines the array of sizes of the fixed set.
The stopping condition for both FSS and GRASP is specified
as that either 1500 iterations have been performed or a time
limit of 360 seconds has been reached.

The experimental results are presented in Table I. The ex-
periments are conducted using the identical set of benchmark
instances as in [14], [16], where the results of the AntCut and
the HS can be found, respectively. The instances and the BKS
values can be found on OR-Library. It is important to note that
only the BKS value of instance G3 is taken from [14], as it is
larger. In the last three rows, for each of the heuristics (except
FSS), the table shows the number of instances that have better,
equal or worse results compared to the value computed using
FSS.

As depicted in Table I, the FSS’s learning mechanism deliv-
ers superior results compared to the base GRASP algorithm,
considering both maximal and average solution qualities. For
all of the instances, it delivers better solutions than at least
one of the AntCut and HS heuristics. The FSS found higher
quality best solutions for 14 and 15 instances out of 24, while
being worse in 6 and 5 than AntCut and HS, respectively.
When comparing the average solution quality, the superiority
of FSS becomes even more pronounced: it has produced better

solutions for 15 and 20 instances compared to AntCut and
HS, respectively. The worse performance with respect to the
average solution quality is observed only for graphs with
higher edge densities.

VIII. Conclusion

We developed the FSS approach to the MCP. The conducted
computational experiments have demonstrated that the FSS
algorithm outperforms other population based metaheuristics
that also incorporate local searches. It has been shown that the
FSS learning mechanism manages to significantly improve the
performance of the base GRASP method.

The presented research can be extended by using more
advanced local searches. Due to the simplicity of the FSS
another avenue of research is hybridization with other meta-
heuristics like simulated annealing. The high effectiveness
of the proposed method on the MCP indicates the potential
for application on real-world problems corresponding to large
problem instances.

Acknowledgement

This research has been partially supported by the Serbian
Ministry of Science, Technological Development and Inno-
vations through the Mathematical Institute of the Serbian
Academy of Sciences and Arts, Agreement No. 451-03-
47/2023-01/200029.

References

[1] K. Chang and D.-C. Du, “Efficient algorithms for layer assignment
problem,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 6, no. 1, pp. 67–78, 1987.

[2] S. de Sousa, Y. Haxhimusa, and W. G. Kropatsch, “Estimation of
distribution algorithm for the max-cut problem,” in Graph-Based Repre-
sentations in Pattern Recognition: 9th IAPR-TC-15 International Work-
shop, GbRPR 2013, Vienna, Austria, May 15-17, 2013. Proceedings 9.
Springer, 2013, pp. 244–253.

[3] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, “An application
of combinatorial optimization to statistical physics and circuit layout
design,” Operations Research, vol. 36, no. 3, pp. 493–513, 1988.

[4] H. Jing, Y. Wang, Y. Li, L. Du, and Z. Wu, “Quantum approximate
optimization algorithm-enabled der disturbance analysis of networked
microgrids,” in 2022 IEEE Energy Conversion Congress and Exposition
(ECCE), 2022, pp. 1–5.

[5] ——, “Dynamics analysis of microgrids integrated with ev charging
stations based on quantum approximate optimization algorithm,” in 2022
IEEE Transportation Electrification Conference and Expo (ITEC), 2022,
pp. 574–578.

[6] A. Deshpande, S. Khuller, A. Malekian, and M. Toossi, “Energy
efficient monitoring in sensor networks,” in LATIN 2008: Theoretical
Informatics: 8th Latin American Symposium, Búzios, Brazil, April 7-11,
2008. Proceedings 8. Springer, 2008, pp. 436–448.

[7] H.-Y. Yang, W.-C. Peng, and C.-H. Lo, “Optimizing multiple in-
network aggregate queries in wireless sensor networks,” in International
Conference on Database Systems for Advanced Applications. Springer,
2007, pp. 870–875.

[8] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA:
Springer US, 1972, pp. 85–103.

[9] P. Festa, P. M. Pardalos, M. G. Resende, and C. C. Ribeiro, “Randomized
heuristics for the max-cut problem,” Optimization methods and software,
vol. 17, no. 6, pp. 1033–1058, 2002.

[10] S. Kahruman, E. Kolotoglu, S. Butenko, and I. V. Hicks, “On greedy
construction heuristics for the max-cut problem,” International Journal
of Computational Science and Engineering, vol. 3, no. 3, pp. 211–218,
2007.

TABLE I
Differences of the best known solution (BKS) and AntCut, Hierarchical Social (HS) metaheuristic, GRASP and FSS, respectively.

Instance Upper Best Average

Graph |V | Edge Density BKS bound AntCut HS GRASP FSS AntCut HS GRASP FSS

G1 800 6.12 11624 12078 13 75 109 27 37.5 179.2 127.4 53.5
G2 800 6.12 11620 12084 15 119 88 22 39 173.8 126.8 48.4
G3 800 6.12 11634 12077 0 84 100 29 24.6 191.2 134.2 47.7
G11 800 0.63 564 627 45 18 46 18 54.2 31.5 58 29
G12 800 0.63 556 621 38 16 44 26 48.3 30.4 56.4 30.6
G13 800 0.63 580 645 51 12 42 18 61.8 28.3 58.4 26
G14 800 1.58 3060 3187 18 46 55 18 29.2 73.4 60.6 33
G15 800 1.58 3049 3169 34 56 61 15 40.5 79.6 67.5 29.9
G16 800 1.58 3045 3172 28 49 44 15 36.8 71.5 58.8 26.1
G22 2000 1.05 13346 14123 102 285 280 90 121.5 352.3 329.9 127
G23 2000 1.05 13317 14129 99 219 238 67 118.7 320 310.8 123.8
G24 2000 1.05 13314 14131 158 225 229 42 176.9 323.7 304 98.6
G32 2000 0.25 1398 1560 136 38 136 76 148.2 67.1 153 86.4
G33 2000 0.25 1376 1537 138 52 128 74 154.1 76.1 134.2 86.6
G34 2000 0.25 1372 1541 174 38 130 50 202.9 63.2 155.4 69.6
G35 2000 0.64 7670 8000 124 122 170 81 148.3 182.3 184.2 101.3
G36 2000 0.64 7660 7996 129 136 169 78 149.8 177.8 185.4 91
G37 2000 0.64 7666 8009 96 118 161 59 119.4 177.3 177 83.7
G43 1000 2.1 6659 7027 8 98 99 18 27.5 168.1 128.2 44.8
G44 1000 2.1 6648 7022 8 108 91 23 34.1 159.5 123 46.8
G45 1000 2.1 6652 7020 12 88 103 34 33.4 167.1 130.9 55.2
G48 3000 0.17 6000 * 0 0 0 0 10.3 68.8 0 0
G49 3000 0.17 6000 * 0 0 0 0 8.4 69.3 0 0
G50 3000 0.17 5880 * 0 0 0 0 3.8 39.2 0 0

Average 59.42 83.42 105.13 36.67 76.22 136.28 127.67 55.79
#Better 6 5 0 9 4 0
#Equal 4 4 3 0 0 3
#Worse 14 15 21 15 20 21

[11] I. Dunning, S. Gupta, and J. Silberholz, “What works best when? a
systematic evaluation of heuristics for max-cut and qubo,” INFORMS
Journal on Computing, vol. 30, no. 3, pp. 608–624, 2018.

[12] E. Arráiz and O. Olivo, “Competitive simulated annealing and tabu
search algorithms for the max-cut problem,” in Proceedings of the 11th
annual conference on genetic and evolutionary computation, 2009, pp.
1797–1798.

[13] G. A. Kochenberger, J.-K. Hao, Z. Lü, H. Wang, and F. Glover, “Solving
large scale max cut problems via tabu search,” Journal of Heuristics,
vol. 19, pp. 565–571, 2013.

[14] L. Gao, Y. Zeng, and A. Dong, “An ant colony algorithm for solving
max-cut problem,” Progress in Natural Science, vol. 18, no. 9, pp. 1173–
1178, 2008.

[15] X. Chen, G. Lin, and M. Xu, “Applying a binary artificial bee colony
algorithm to the max-cut problem,” in 2019 12th International Congress
on Image and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI). IEEE, 2019, pp. 1–4.

[16] A. Duarte, F. Fernández, Á. Sánchez, and A. Sanz, “A hierarchical social
metaheuristic for the max-cut problem,” in European Conference on
Evolutionary Computation in Combinatorial Optimization. Springer,
2004, pp. 84–94.

[17] Q. Wu, Y. Wang, and Z. Lü, “A tabu search based hybrid evolutionary
algorithm for the max-cut problem,” Applied Soft Computing, vol. 34,
pp. 827–837, 2015.

[18] S.-H. Kim, Y.-H. Kim, and B.-R. Moon, “A hybrid genetic algorithm
for the max cut problem,” in Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, 2001, pp. 416–423.

[19] G. Lin and J. Guan, “An integrated method based on PSO and EDA
for the max-cut problem,” Computational intelligence and neuroscience,
vol. 2016, pp. 11–11, 2016.

[20] R. Martı́, A. Duarte, and M. Laguna, “Advanced scatter search for the

max-cut problem,” INFORMS Journal on Computing, vol. 21, no. 1, pp.
26–38, 2009.

[21] Y.-H. Kim, Y. Yoon, and Z. W. Geem, “A comparison study of harmony
search and genetic algorithm for the max-cut problem,” Swarm and
evolutionary computation, vol. 44, pp. 130–135, 2019.

[22] J. Wang, “An improved discrete hopfield neural network for max-cut
problems,” Neurocomputing, vol. 69, no. 13-15, pp. 1665–1669, 2006.

[23] W. Yao, A. S. Bandeira, and S. Villar, “Experimental performance of
graph neural networks on random instances of max-cut,” in Wavelets
and Sparsity XVIII, vol. 11138. SPIE, 2019, pp. 242–251.

[24] R. Jovanovic, M. Tuba, and S. Voß, “Fixed set search applied to
the traveling salesman problem,” in International Workshop on Hybrid
Metaheuristics. Springer, 2019, pp. 63–77.

[25] R. Jovanovic and S. Voß, “Fixed set search application for minimizing
the makespan on unrelated parallel machines with sequence-dependent
setup times,” Applied Soft Computing, vol. 110, p. 107521, 2021.

[26] R. Jovanovic, A. P. Sanfilippo, and S. Voß, “Fixed set search applied
to the clique partitioning problem,” European Journal of Operational
Research, vol. 309, no. 1, pp. 65–81, 2023.

[27] R. Jovanovic, A. P. Sanfilippo, and S. Voß, “Fixed set search applied to
the multi-objective minimum weighted vertex cover problem,” Journal
of Heuristics, vol. 28, pp. 481–508, 2022.

[28] R. Jovanovic, S. Bayhan, and S. Voß, “Matheuristic fixed set search
applied to electric bus fleet scheduling,” in Learning and Intelligent
Optimization, M. Sellmann and K. Tierney, Eds. Cham: Springer
International Publishing, 2023, pp. 393–407.

[29] P. Festa, P. Pardalos, M. Resende, and C. Ribeiro, “Grasp and vns for
max-cut,” 01 2003.

