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Abstract: The dynamic minimum cost berth allocation problem (BAP) is considered with an aim to minimize the total costs of waiting and handling, as well as earliness or tardiness of completion, for all ships. BAP can be presented as the Mixed Integer Linear Program (MILP) with a large number of 0-1 variables, making it suitable for the application of Mixed Integer Programming (MIP) heuristics. We apply three well known MIP heuristics: local branching, variable neighborhood branching and variable neighborhood decomposition search for 0-1 MIP, where the last one performs the best. In the computational experiments, we compare the results of the above mentioned MIP heuristics with the CPLEX commercial solver within the same CPU time limit. For small size examples, variable neighborhood decomposition search for 0-1 MIP heuristic method was able to find optimal solutions for all instances and to outperform CPLEX regarding computation times. The results for medium size test examples indicate that the complexity prevents this problem from being efficiently treated by any of the three general purpose solution methods considered in this paper. 
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1. Introduction 

A container terminal (CT) in a sea port can be described as open system of container flow with sea-side interface. This interface is quayside with loading and unloading of vessels. After arrival at the port, a container vessel is assigned to a berth equipped with quay cranes (QCs) to load and unload containers. Various types of container vessels have to be served at the quayside. In order to compete in this environment, a CT should be organized efficiently. One issue of seaside operations planning is the assignment of quay space and service time to vessels that have to be unloaded and loaded at a CT (Bierwirth and Meisel, 2010; Imai, et al., 2003). This problem is commonly referred to as the berth allocation problem (BAP). 
BAPs can be classified as discrete or continuous, as well as static or dynamic (Meisel and Bierwirth, 2009). In the discrete case, the quay is partitioned into a number of sections, called berths, and each berth can serve one vessel at a time. Moreover, time could also be partitioned into discrete units allowing using integer arithmetic for calculation of the objective function value. In the continuous case a calling vessel can be placed at any position, with the restriction to avoid overlapping with other vessels and time is also considered continuous. In a static BAP it is assumed that all vessels arrive to the container terminal in advance, namely before any berth becomes available. If the vessels can arrive at any time during the planning horizon (although we still have a priori knowledge of their arrivals), then we deal with dynamic BAP.

In recent years, an ever increasing number of papers on CTs considering BAP have appeared. In most of them crane resources were either ignored (assuming that each berth is equipped by a crane) (Guan and Cheung, 2004; Kim and Moon, 2003; Wang and Lim, 2007) or treated separately within the second stage of problem solving (Park and Kim, 2003). Moreover, different authors considered different objectives to be minimized within the solution of BAP. In some of the papers the total of waiting and handling times was minimized (Bierwirth and Meisel, 2009; Imai, et al., 2001), while in the others the minimization of total costs for waiting and handling as well as earliness or tardiness of completion was considered as the objective (Hansen, et al., 2008). We can also distinguish solution approaches: while minority of authors was developing exact methods (Oğuz, et al., 2009) usually for some special cases of the problem, in most of the papers heuristic (e.g. Lagrangean relaxation (Imai, et al., 2001), Branch-and-Bound-based heuristic (Bierwirth and Meisel, 2009)) and meta-heuristic methods (genetic algorithm (Nishimura, et al., 2001), tabu search (Cordeau, et al., 2005), variable neighborhood search (Hansen, et al., 2008)) were used.

We consider the dynamic minimum cost BAP in the case when QC resources are ignored and propose the application of heuristic methods based on the Mixed Integer Programming (MIP) formulation of the problem. We tested three state-of-the-art MIP-based methods: Local Branching (Fischetti and Lodi, 2003), Variable neighborhood Branching (Hansen, et al., 2006) and Variable Neighborhood Decomposition Search for 0-1 MIP (Lazić,  et al., 2010). Our experiments show that the best performing among them is Variable Neighborhood Decomposition Search for 0-1 MIP. We present here the comparison results with respect to the CPLEX commercial solver (ILOG, 2008). 
The rest of this paper is organized as follows. BAP is described and formulated as integer linear program in section 2. The section 3 contains a brief overview of used MIP-based heuristic. Experimental evaluation of MIP-heuristic efficiency is presented in section 4. The last section contains concluding remarks.

2. Dynamic Minimum Cost Berth Allocation Problem 
BAP represents one of the major CT operations planning problem (Bierwirth and Meisel, 2010; Imai, et al., 2003). It consists of assigning a berthing position and a berthing time to every vessel incoming to be served within a given planning horizon with and aim to minimize some objective. In this paper the minimization of berthing cost as well as the costs of earliness and tardiness of each vessel is considered. The main assumption is that the number of QCs is equal to the number of berths and therefore QC scheduling problem can be avoided.

Typically, the decisions are made with respect to the different arrival times, lengths, and handling times of vessels. The handling (operation) times are usually assumed to be fixed and known in advance. As shown in Fig. 1, a solution to BAP can be depicted in a space-time-diagram. Both coordinates are assumed to be discrete (space is modeled by the berth indices while the time horizon is partitioned into segments in such a way that berthing time of each vessel is represented by an integer). The height of each of the rectangles corresponds to the length of a vessel (expressed by the number of berths) and the width corresponds to the needed handling time. The lower-left vertex of a rectangle gives the berthing position and berthing time of a vessel and it is referred as the reference point of a vessel (marked by the index of vessel in Fig. 1). A berth plan is feasible if the rectangles do not overlap (see Fig. 1).

[image: image1.wmf]
Fig. 1: An example of BAP solution
Source: Kordić, S. PhD Thesis (in progress)
2.1. Problem Description
The input parameters of BAP are: The total number of vessels (l); The total number of different berthing positions (m); The total number of time segments (T); The expected time of arrival (ETAk) of vessel k. ETA is a kind of agreement between carriers and the terminal operator regarding the arrival time of vessels. Thus, berthing earlier than the promised berthing time causes the corresponding vessel to speed up, which in turn causes the extra consumption of fuel, and berthing later than the promised berthing time may incur complaints from carriers; The total operation time (ak) of vessel k if only one QC operates on it during the berthing; The length (bk) of vessel k expressed as the number of berths. Assuming that each berth is equipped with a crane, the time required to unload and load all the cargo for vessel k equals 
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; The due time for the departure (dk) of vessel k; The least-cost berthing location of the reference point (sk) of vessel k;  The container handling cost (c1k) per unit distance of vessel k from the least-cost berthing location; The penalty cost (c2k) of vessel k per unit time of arrival before ETAk; The penalty cost (c3k) of vessel k per unit time of arrival after ETAk; The penalty cost (c4k) of vessel k per unit time of delay beyond the due time dk.

The goal is to minimize the total penalty cost which includes: the penalty induced by missing the least-cost (preferred) berthing location of the reference point; the penalties induced by the actual berthing earlier or later than the expected time of arrival and the penalty cost by the delay of the departure after the promised due time. The last three terms have impacts on the objective function provided that they are positive. More precisely, the objective function can be expressed in the following form: 
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2.2. Mathematical Programming Formulation
Although containing some non-linearities (expressed by absolute values, positive components, conditional expressions), BAP can be formulated as Mixed Integer Linear Program (MILP). Therefore, it is possible to apply well known optimization software (like CPLEX, ILOG 2008) to obtain optimal solution for small size problem instances and MIP-based heuristic methods for the larger ones. 

In order to develop MILP for BAP, let us introduce the following decision variables:
· binary variables xijk, zijk and vjk defined as follows 
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· integer variables (taking values 1, 2,…, T)

Atk - The Berthing position of vessel k on the time axis;
Dtk - The completion (departure) time of vessel k. 
Moreover, let us perform some preprocessing. First, it is obvious that we can calculate array 
[image: image9.wmf]é

ù

k

k

k

b

a

H

/

=

 in advance. Now, we can introduce matrices E1kj, E2kj, D1kj, and Zbki defined as follows:
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In this way we extracted most of the problem non-linearities into preprocessing phase. The only part to be linearized is the one describing continuity in vessel berthing time and space (the fact that vessel must be assigned to neighboring bk berths and successive Hk time slots - represented by the rectangle in space-time diagram in Fig. 1).

Based on the formulation presented in (Park and Kim, 2003) and our preprocessing scheme, BAP can be formulated as follows:
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                                                   xijk ,zijk ,vjk ( {0,1}                                                                                                   (17)             
The objective function, given by equation (1), aims to minimize the weighted sum of the berthing cost components (the cost depending on the distance from the Berthing location of a vessel to the preferred location, the penalty cost incurred by Berthing earlier or later than the expected time of arrival (ETA), and the penalty cost incurred by the delay of the departure beyond the desired due time). Only one vessel can occupy a single berth at a time according to constraints (2). Constraints (3) restrict the number of referent positions to one per vessel. Constraints (4) and (5) define the values of variables determining the berthing times for each vessel. Constraints (6) are to assure that the number of available berths is not exceeded. Operation time of each vessel is controlled by constraints (7). Constraints (8) and (9) define correspondence between variables vjk and xijk. Constraint (10) relates the departure time Dtk to variables vjk. Because vjk is 1 if at least one crane serves vessel k during time segment j that is between time j and j+1, the departure time of vessel k must be greater than equal to j + 1. Invalid values of vjk 's are eliminated by constraints (11) and (12), i.e. the vessel is processed only if at least one berth is assigned to it within given time segment. Constraints (13) through (16) imply that only xijk within a rectangle can take value 1. In all relevant cases M represents large enough constant.

As can be seen from the above MILP formulation, the problem complexity with respect to the number of variables is O(mlT). More precisely, in order to solve the problem we need to determine values for lT(2m+1) binary variables, 2l integer ones and to calculate objective function value (which is floating point number in general case). For solving such a complex MIP problem, we propose MIP-based heuristic methods which have proven their efficiency in the recent literature. 
3. MIP Heuristics 
According to the mathematical formulation provided in Section 2, BAP presented in this paper is the special case of the 0-1 MIP:
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 is the feasible set, N is the set of indices of all variables, G ( N is the set of indices of general integer variables and B ( N is the set of indices of binary variables, B(G=(, B((. Indeed, all problem constraints and the objective function are linear, and the set of binary variables {xijk, zijk, vjk |1( i ( m, 1( j ( T, 1 ( k ( l} is non-empty. Therefore, it is possible to tackle this problem by using 0-1 MIP solution methods. We applied three well known heuristics for 0-1 MIP problem: Local branching (LB) (Fischetti and Lodi, 2003), Variable Neighborhood Branching (VNB) (Hansen, et al., 2006) and Variable Neighborhood Decomposition Search for 0-1 MIP (VNDS-MIP) (Lazić,  et al., 2010). Since the best results were obtained by VNDS-MIP we describe it briefly here. We first introduce some notations.

Let P be a given 0-1 MIP problem as defined in (18). The linear relaxation LP(P) of problem P is obtained from P by releasing the integer requirements on ξ. Let ξ and η be two arbitrary integer feasible solutions of P and J( B. The partial distance between ξ and η, relative to J, is defined as δ(J, ξ, η)=Σj( J|ξ j - η j|. Now we can also introduce the following subproblem notation for k(N({0}: P(k, ξ0) = (P| δ(B, ξ0, ξ) ( k).

The neighborhood structures { Nk | k = kmin,…,kmax},  1( kmin ( kmax ( |B|, can be defined knowing the distance δ(B, ξ, η) between any two solutions ξ, η ( X. The set of all solutions in the k-th neighborhood of ξ ( X is denoted as Nk(ξ), where 
Nk(ξ) = {η ( X | δ(B, ξ, η) ( k}.
From the definition of Nk(ξ), it follows that Nk(ξ) ( Nk+1(ξ), for any k ( {kmin, kmin+1, …, kmax - 1}, since δ(B, ξ, η) ( k implies δ(B, ξ, η) ( k +1. It is trivial to conclude that, if we completely explore neighborhood Nk+1(ξ), it is not necessary to explore neighborhood Nk(ξ).

Variable Neighborhood Decomposition Search (VNDS) (Hansen,  et al., 2001) is a two-level VNS (Mladenović and Hansen, 1997) scheme for solving optimization problems, based upon the decomposition of the original problem. Recently, VNDS has been implemented for solving 0-1 MIPs (Lazić,  et al., 2010) and it was named Variable Neighborhood Decomposition Search for 0-1 MIPs (VNDS-MIP). The approach proposed by (Lazić,  et al., 2010) is a VNDS based diving strategy, which combines linear programming (LP) solver, MIP solver and Variable Neighborhood Descent (VND) based MIP solving method (VND-MIP) in order to efficiently solve a given 0-1 MIP problem. In this paper we use a slightly improved version of the original method presented in (Lazić,  et al., 2010). Namely, we decided to introduce objective cuts in case of an improvement in order to reduce the search space. In addition, if the current incumbent solution cannot be improved by examining all subproblems generated with respect to the current linear relaxation solution
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 is added to change the linear basis and the whole process is reiterated.

Input parameters for VNDS-MIP are 0-1 MIP problem P, integer d which controls the size of the subproblems generated within VNDS-MIP, initial integer feasible solution x and the maximum neighborhood size kvnd within VND-MIP. Starting from incumbent integer feasible solution x of P and an optimal solution 
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of LP(P), variables are ranked in the non-decreasing order of their absolute values of the difference between the values of x and 
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. Subproblems within VNDS are obtained by successively fixing a certain number of variables in that ranking. In this way, the subproblem involves the free variables which are furthest from their linear relaxation values. Then these subproblems are solved exactly or within the CPU time limit by, for example, CPLEX solver. The subproblems are changed by the hard fixing of the variables according to VNS rules.

It was noted that CPLEX solver requires a lot of CPU time to find the first feasible solution required also at the beginning of VNDS-MIP. Therefore, the single neighborhood diving heuristic (Lazić,  et al., 2011) is used for finding initial feasible solutions. This heuristic is based on the systematic hard variable fixing (diving) process, according to the information obtained from the linear relaxation solution of the problem. In the next section we present the comparison results between VNDS-MIP and CPLEX commercial solver within the same CPU time limit.
4. Experimental Evaluation
To evaluate the efficiency of VNDS-MIP we treat two sets of test instances for BAP: the first set is containing artificially generated problems and the second is the set of real life instances proposed in (Changa, et al., 2010). We compared VNDS-MIP with CPLEX 11.2 optimization software (ILOG, 2008). VNDS-MIP is coded in C++ programming language for Linux operating system and compiled with gcc (version 4.1.2) and the option -o2. Both CPLEX and MIP heuristic are executed on Intel Core 2 Duo CPU E6750 on 2.66GHz with RAM=8Gb under Linux Slackware 12, Kernel: 2.6.21.5.

The results for the first set of test examples are summarized in Table 1. For all examples number of berths and time horizon are fixed, while number of vessels is varied from 6 to 15 and it is represented in the first column of Table 1. The numbers of binary and integer variables are given in the second and third column, respectively. The objective function value for an optimal solution (the total berthing and earliness-tardiness cost) is given in the fourth column. It is obtained by both solution methods. The remaining 2 columns contain CPU times required by CPLEX and VNDS-MIP to reach the optimal solution, respectively. As can be seen from Table 1, in most of the cases VNDS-MIP was able to obtain optimal solution within the smaller amount of CPU time.
Table 1 Computational results - artificial test problems: m=8,T=15
	l
	#variables
	OPT

COST
	CPU Time

	
	bin
	int
	
	CPLEX
	VNDS-MIP

	6
	1530
	12
	380
	0.06
	0.02

	7
	1785
	14
	665
	20.53
	90.66

	8
	2040
	16
	745
	18.91
	10.28

	9
	2295
	18
	780
	20.88
	28.27

	10
	2550
	20
	1070
	35.19
	15.00

	11
	2805
	22
	1325
	644.98
	46.25

	12
	3060
	24
	1375
	129.76
	145.94

	13
	3315
	26
	1415
	379.64
	1383.44

	14
	3570
	28
	1485
	635.40
	362.62

	15
	3825
	30
	1845
	4588.20
	15.06

	av.
	647.35
	209.75


The second set of examples consists of the real-life instances generated starting with the example taken from (Changa, et al., 2010) characterized by 21 vessels, 12 berths and 54 time units within the time horizon. This instance is further extended by adding new vessels; up to 28 (see Fig 2).

Table 2 contains results for the examples from the second set. In this table we did not include optimal values of the objective function because CPLEX CPU time required to solve these instances to optimality was quite large. For example, it took 14274sec=3h 57min 54sec for CPLEX to solve the smallest instance with 21 vessels and obtain the objective function value 4779. Therefore, for the remaining examples we did not even try to find an optimal solution. Instead, we defined the same time limit for both methods used (CPLEX and VNDS-MIP) and in Table 2 report the best obtained results.
[image: image37.wmf]
Fig. 2: An example of real-life BAP solution
Source: Changa, et al., 2010
Table 2 is organized as follows. Number of vessels is presented in the first column. Columns 2 and 3 contain the best objective function value and the corresponding CPU time obtained by CPLEX solver, respectively. Same data connected with VNDS-MIP heuristic are given in columns 4 and 5. The specified time limit for each example is presented in the last column of Table 2. From the presented results we can see that for smaller examples (up to 24 vessels), VNDS-MIP results dominate the ones obtained by CPLEX with respect to both, solution quality and CPU time. For larger test instances (25-28 vessels) CPLEX is able to find better solutions. VNDS-MIP obviously faced the problem of being trapped in some worse local minimum.

Table 2 Computational results – real life test problems: m=12,T=54

	l
	CPLEX
	VNDS-MIP 
	T. Limit

(sec.=hours)

	
	COST
	CPU Time
	COST
	CPU Time
	

	21
	24562
	3698.41
	15424
	494.30
	3600.00= 1h

	22
	16334
	7434.44
	10108
	961.13
	7200.00= 2h

	23
	96549
	7404.73
	14110
	1207.77
	7200.00= 2h

	24
	6594
	7429.48
	9521
	1609.55
	14400.00= 4h

	25
	13262
	18709.60
	91620
	1569.54
	18500.00= 5h

	26
	26614
	18716.10
	77439
	24742.42
	18500.00= 5h

	27
	26679
	18638.50
	69143
	3215.10
	21600.00= 6h

	28
	8418
	44530.70
	63249
	7779.35
	43200.00=12h

	av.
	27376.50
	15820.24
	43826.75
	5197.39
	15750.00=4.375h


From these results we can conclude that this problem is too complex to be efficiently treated by any of the general purpose solution methods we tested. This identifies the need for developing dedicated methods that will include all available a priori knowledge about this problem.
5. Conclusion 
The Berth Allocation Problem (BAP) with an aim to minimize the total costs for waiting and handling as well as earliness or tardiness of completion, for all ships is considered. The problem is formulated as a mix-integer linear program. The complexity analysis of this problem is performed as well as the experimental evaluation of MIP-based exact and heuristic solution methods. For small size examples, heuristic method was able to find optimal solutions for all instances and to outperform CPLEX regarding computation times. The discouraging results for medium size test examples direct our further research to the development of dedicated (combinatorial–based) methods that will include all available knowledge about the considered problem.
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