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Abstract—A new optimization method based on the Evolu-
tionary Algorithm (EA) is developed for solving the Minimum
Cost Hybrid Berth Allocation Problem (MCHBAP) with fixed
handling times of vessels. The goal of the MCHBAP is to minimize
the total costs of waiting and handling, as well as earliness or
tardiness of completion, for all vessels. It is well known that
this kind of problem is NP hard. The main problem one faces
when dealing with the MCHBAP is a large number of infeasible
solutions. In order to overcome this problem, we propose an EA
implementation adapted to the problem that involves four types
of mutation operator and two additional improvement strategies,
but no crossover operator. The proposed EA implementation
is benchmarked on real life test instances. Our computational
results show that the proposed EA method is able to find optimal
solutions for real life test instances within relatively short running
time, having in mind the nature of the considered problem.

I. INTRODUCTION

Berth Allocation Problem (BAP) involves assigning a
berthing position and a berthing time to each incoming vessel
to be served within a given time horizon with an aim to
minimize some objective [2]. Vessels are represented by a
set of data containing the expected time of arrival, the size,
anticipated handling time, a preferred berth in the port, and
penalties. In [16], it was proven that BAP is a NP-hard
problem.

In the recent literature BAP has been widely studied [8],
[14], [21], [25]. Different authors considered diverse objectives
to be optimized within the BAP solution: the total waiting and
handling times were minimized in [1], [12], the total costs for
waiting and handling as well as earliness or delay in comple-
tion was minimized in [11]. The solution approaches could
also be distinguished: while minority of authors developed
exact methods [15], [20], and some heuristic approaches, e.g.,
Lagrangean relaxation [12], Branch-and-Bound-based heuris-
tic [1], in most of the papers meta-heuristic methods were
used (genetic algorithm [19], [24], tabu search [4], variable
neighborhood search [11]).

In our work, the minimization of berthing cost as well as
the costs of earliness and delay of each vessel in the case of
static hybrid BAP is considered. We refer to this variant as
Minimum Cost Hybrid Berth Allocation Problem, MCHBAP.
The Mixed Integer Linear Programming formulation (MILP)
for MCHBAP was proposed in [5] and used with CPLEX
11.2 and MIP-based meta-heuristics that were used to deal
with larger test instances. However, due to the formulation

complexity it was not possible to obtain good results for the
examples with more than 20 vessels. These results showed that
meta-heuristic approach would be much more convenient and
we suggest to use an Evolutionary Algorithm (EA).

Evolutionary-based methods, especially Genetic algorithms
(GA), are very popular as solution approaches to different
variants of BAP. One of the first papers in the literature
proposes applying GA to BAP is [7]. The authors considered
dynamic vessel arrivals and examined several variants of the
Randomized Local Search, Tabu Search and Genetic Algo-
rithms. Nishimura et al. [19] presented a GA heuristic for
the discrete space and dynamic vessel arrival time for berth
scheduling problem. Imai et al. [13] presented a formulation
for the discrete dynamic BAP at a terminal with indented
berths. Authors extended GA from [19] with a procedure to
obtain feasible solutions. Han et al. [10] combined GA with
simulated annealing in case of the discrete dynamic berth
scheduling problem with the objective of minimizing the total
service time of all the vessels. Theofanis et al. [24] were the
first to present an optimization based GA heuristic for the
dynamic berth scheduling problem.

We propose an EA based approach that uses four muta-
tion techniques: Swap, Scramble, Insert and Inversion. We
also incorporate two types of improvement techniques on a
certain number of individuals. Chromosomes in our EA have
integer representation proposed in [24]. For the experimental
evaluation we used real life test instances proposed in [3].
The proposed EA is compared against CPLEX and VNDS-
MIP (the best performing MIP-based meta-heuristic according
to [5]). Our computational results show that the proposed EA
outperforms both CPLEX and VNDS-MIP with respect to the
solution quality and CPU time.

The rest of this paper is organized as follows. Sect. II
contains the description of MCHBAP. Sect. III is devoted to
the proposed variants of EA. Experimental evaluation is given
in Sect. IV. Sect. V contains some concluding remarks and the
directions for future work.

II. PROBLEM DESCRIPTION

The input data of MCHBAP are listed below:
l : The total number of vessels;
m : The total number of berthing positions;
T : The total number of time segments

in the planning horizon;



vessel : The sequence of data describing vessels
with the following structure:

vessel={(ETAk, ak, bk, dk, sk, c1k, c2k, c3k, c4k)}, k=1, l.

The elements of a 9-tuple vessel repre-
sent the following data for each vessel:
ETAk : The expected time of arrival of vesselk.
ak : The processing time of vesselk;
bk : The length of vesselk (the number of berths);
dk : The required departure time of vesselk;
sk : The least-cost berthing location

for reference point of vesselk;
c1k : The penalty cost if vesselk cannot dock

at its preferred berth;
c2k : The penalty cost per unit time if vesselk

must arrive before ETAk;
c3k : The penalty cost per unit time if vesselk

must arrive after ETAk;
c4k : The penalty cost per unit time if vesselk

is delayed beyond the departure time dk.

A feasible solution of MCHBAP is subject to two sets of
constraints: at a time t, each berth can be assigned to only one
vessel (Constraints 1), and a berth is allocated to the vessel
only between its arrival and departure times (Constraints 2).

Let us denote by Atk and Dtk actual berthing and de-
parture times for a vessel, respectively, and let σk denotes
the difference from the least-cost berthing location of the
reference point, k = 1, . . . , l. The aim of MCHBAP is to
minimize total penalty cost including: the penalty incurred as
a result of missing the least-cost (preferred) berthing location
of the reference point; the penalties resulted by the actual
berthing earlier or later than the expected time of arrival and
the penalty cost induced by the delay of the departure after
the promised due time. The last three terms influence the
objective function in case they are positive. More accurately,
the objective function (1) can be expressed as follows:
l∑

k=1

(c1kσk + c2k(ETAk −Atk)+ + c3k(Atk − ETAk)
++

+ c4k(Dtk − dk)+), (1)

where

σk =

T∑
t=1

m∑
i=1

{|i− sk| : vessel k occupies position (t, i)} , (2)

and

(a−b)+ =

{
a− b, if a > b,
0, otherwise, (3)

The detailed MILP formulation can be found in [5].

III. EA FOR MCHBAP

We have developed EA approach for solving MCHBAP
that uses integer encoding of individuals. The proposed EA
involves four mutation types and an additional improvement
step that consists of two types of improvement techniques
on a certain number of individuals. The crossover operator
is omitted in order to better deal with the problem of avoiding
infeasible individuals. In the following subsections all aspects
of the proposed EA will be explained in details.

A. Representation of individuals

Each individual is represented as a list of m sublists, where
each sublist corresponds to one berthing position. The elements
of sublists are indices of the vessels allocated to a berthing
position and sorted in order in which they are to be scheduled.
The total number of elements through all m sublists is equal
to l, which represents the length of individual (i.e., the total
number of vessels to be scheduled).

Let us consider an example of the problem with m = 8
berths and l = 5 vessels to be scheduled within the time
horizon of T = 15 units described by the data given in Table I.

TABLE I. 9-TUPLE VALUES FOR EXAMPLE WITH m = 8, l = 5 AND
T = 15

vesselk ETAk ak bk dk sk c1k c2k c3k c4k
1 1 9 3 4 1 10 20 20 25
2 4 6 3 6 3 10 20 20 25
3 4 14 2 11 6 10 20 20 25
4 5 14 2 12 7 10 20 20 25
5 6 18 2 16 2 10 20 20 25

A typical individual corresponding to the feasible solution
of this problem could be represented as:

Ind 1:{ {1}︸︷︷︸
berth 1

,{5, 2}︸ ︷︷ ︸
berth 2

, {}︸︷︷︸
berth 3

, {}︸︷︷︸
berth 4

, {3}︸︷︷︸
berth 5

, {}︸︷︷︸
berth 6

, {4}︸︷︷︸
berth 7

, {}︸︷︷︸
berth 8

}

The meaning of this representation is that berth 1 has to serve
vessel indexed by 1. Berth 2 serves vessels 5 and 2, while
berths 3, 4, 6, and 8 are empty. Ship 3 is served on berth 5
while berth 7 serves vessel 4.

The resulting allocation is illustrated in Fig. 1. Ship is the
member of the k-th list if its reference point (lower left corner
of the corresponding rectangle in the two dimensional plane)
belongs to the berth with index k. Note that a vessel may
also allocate some space within other adjacent berths, since
we consider the hybrid case of BAP.

Fig. 1. Decoded solution for Ind 1

Ships 5 and 2 are served on same berth, however, the
order in individual doesn’t correspond to the order on time
axis. Since vessel 5 is allocated to port before vessel 2, it
is placed on the cheapest possible location (which is not the
first empty location on berth 2). Then, vessel 2 is allocated at
the cheapest location available after vessel 5 occupies its own
place in the port. As it can be seen in this example, berth 3
remains empty in the representation of this individual, since



there is no reference point of any vessel assigned to berth 3.
However, since we deal with HBAP, berth 3 is not free, it is
occupied with some parts of vessels 1, 2 and 5. It is worthy
to note that Ind 1 and the corresponding schedule presented
in Fig. 1 represent the optimal solution for this example.

The individual is denoted as infeasible if its representation
leads to the overlapping of vessels in two dimensional plane,
or if the length of all vessels on the same berth exceeds the
planning time horizon T . Since the length of vessels, i.e.,
the length of corresponding rectangles is a priori known, it
is possible to check if a berth can handle an unallocated
vessel, and the infeasible individual can be discarded. Feasible
individuals can be decoded in the MCHBAP solution where
3-tuples (berth, time, cost) corresponds to the reference point
of vessels in the two dimensional plane.

B. Generating initial EA population

Our EA starts with the procedure of forming nEA indi-
viduals for the initial population. The number of individuals in
the EA population (nEA) is one of the input parameters for
the EA. As a part of the initialization, for all vessels and for
all possible positions of the vessel in 2-dimensional plane the
list of 3-tuples elements (berth, time, penalty cost) is created.

For each of nEA individuals in the population, a list of 3-
tuples elements (berth, time, penalty cost), denoted as ξ list, is
created. During the EA run, ξ lists of individuals are updated
after the allocation of vessels in the port. The pseudo-code of
procedure for generating initial population is shown in Fig. 2.

Initialize(nEA)
// Generates initial population with nEA individuals
Begin

UnusedShips ← {1, 2, . . . , l};
While UnusedShips 6= ∅ do

ID=Roulette (UnusedShips,selectionCriteria);
Berths=Determine all berths with enough
free space for vessel ID;

berthID=TournamentForBerths(size,Berths);
Insert vessel ID on last position on berthID;
UnusedShips ← UnusedShips\ {ID};

End;
End;

Fig. 2. Procedure for the generation of the initial population

In order to generate a new individual, the procedure needs
to decide on the order of vessels selection and on which berth
to place each vessel. Criterion for vessel selection is a linear
combination of ETA parameter, the size of the corresponding
rectangle associated to the vessel in 2-dimensional plane, and
the calculated average cost of all possible ξ list elements for
the observed vessel. Coefficients with the parameters in this
linear combination represent the impact of a parameter on
the vessel selection criterion. The values of these coefficients
were determined experimentally and set to 0.12, 0.13, 0.75,
respectively.

Among all unused vessels, the procedure is choosing one
by the roulette wheel selection based on calculated priorities
of the vessels. Since the length of all vessels is known in
advance, the subset of berths with enough free space to handle

the selected vessel can be determined. In the next step, the
procedure is resolved which berth should be associated to the
selected vessel. The berth is chosen by tournament selection
among all possible berths with enough free space for the
examined vessel. Once the vessel and its associate berth are
selected, the vessel is placed as the last one on the given berth.
The index of a vessel is included as the last element into the
corresponding sublist of the associate berth. The procedure
runs until all vessels are allocated to the berths.

C. EA operators

One third of individuals from the EA population directly
passes to the next generation, preserving highly fitted genes
of the population. In order to select remaining 2/3 ∗ nEA
individuals that will take part in creating new EA generation, a
fine-grained tournament selection with two tournament types is
implemented [9]. More precisely, 40%∗(2/3nEA) individuals
are selected though tournaments of size1, while remaining
individuals are obtained as winners of tournaments of size2,
with size1 < size2. Applied fine grained tournament selection
ensures that weaker individuals have better chance to be
selected. In addition, the selection operator disables duplicated
individuals to enter the next generation. This strategy helps in
preserving the diversity of genetic material and in preventing
the algorithm to converge to a local optimum.

In the literature, different concepts of EA are proposed
with different variation of operators involved. Some of the
existing EA approaches include crossover operator [17], [23],
while other incorporate only mutation as variation operator [6],
[22]. In our EA implementation, we do not use crossover as
variation operator. The main reason for this decision was the
fact that different types of crossover operators that we tried to
implement produced too many infeasible individuals. Discard-
ing infeasible individuals from the EA population, results in
significant decrease of the population size, while various repair
techniques that we have tried in order to restore feasibility were
inefficient due to the huge CPU time they required. In addition,
the quality of the final solution was worse than in the case of
the EA without crossover. For these reasons, we propose EA
that involves mutation only. Four types of mutation operators
adapted to the problem are implemented: Insert, Inversion,
Scramble and Swap. Each individual is a subject of all four
mutations, producing maximally four offsprings. All types of
mutations allow that the selected vessels change both berth and
time coordinate. Therefore, they can produce large changes
in the considered individual and the significant change in the
objective function value.

Insert mutation picks two vessels (genes) at random and moves
the second one to follow the first (in Fig. 3 vessels 3 and 2
are selected and vessel 2 is moved behind the vessel 3).

Inversion mutation picks two vessels at random and then
inverts the substring between them. The illustration given in
Fig. 4 shows the change in the individual produced by inverting
part of the chromosome between vessels 2 and 1 (including
these two vessels).

Swap mutation picks two vessels from a chromosome and
swaps their positions. Fig. 5 illustrates the application of
the swap mutation type to the vessels 4 and 3 in a feasible
individual from the above mentioned example.



Initial individual: Resulting individual:
{{},{2,5},{},{},{3,1},{},{4},{}} {{},{5},{},{},{3,2,1},{},{4},{}}

Fig. 3. Illustration of insert mutation type

Initial individual: Resulting individual:
{{2,3},{1},{4},{},{5},{},{},{}} {{1,3},{2},{4},{},{5},{},{},{}}

Fig. 4. Illustration of inversion mutation type

Initial individual: Resulting individual:
{{5},{1,2},{4},{},{3},{},{},{}} {{5},{1,2},{3},{},{4},{},{},{}}

Fig. 5. Illustration of swap mutation type

Scramble mutation scrambles the position of a subset of
vessels in the chromosome. This actually means that a random
permutation of the selected subset of vessels is generated.
The subsets influenced by the mutations can be anywhere
in the individual (the ending points can belong to different
sublists) and sometimes, the mutations may even affect the
whole individual. The illustration of scramble mutation is given
in Fig. 6. The scrambled is the part between vessels 1 and 5,
including these two vessels.

Initial individual: Resulting individual:
{{1},{2},{5},{},{3},{},{4},{}} {{2},{5},{1},{},{3},{},{4},{}}

Fig. 6. Illustration of scramble mutation type

Mutation probability µEA is assumed to be variable, and
it changes in each generation. As suggested in [24], during the
EA run the weight is shifted from the coarse type Inverse and

Scramble mutations to the Insert and Swap mutations. In this
way, we allow the algorithm to perform large jumps at the
beginning of the search while, as the objective function im-
proves, we concentrate on the solutions from a smaller region.
The probability to apply Scramble and Inversion mutation on
some gene is decreasing according to formula

µEA = 1− 0.9 ∗ (Index of Gener)/(Max Num Gener)

while probability of Insert and Swap mutations are increasing
and calculated as follows

µEA = 0.9 ∗ (Index of Gener)/(Max Num Gener).

The formulae above are determined through the set of prelim-
inary experiments.

Mutation operators are performed on randomly selected
pair of genes in the chromosome. Each individual is a subject
of all four mutations with a given probability. Only one
randomly selected gene within each individual is considered
as a subject of the mutation operator with given probability
µEA. After the mutation phase is completed, some individuals
are selected for additional improvement strategy. The num-
ber of individuals to be improved in each generation is the
input parameter of our EA. The individuals to be improved
are chosen by tournament selection. The size of tournament
performed for selecting individuals to be improved is also an
input parameter of EA. Selection pressure is easily adjusted by
changing the tournament size. If the tournament size is larger,
weak individuals have a smaller chance to be selected.

Applied improvement procedure tries to optimize the allo-
cation of vessels defined by the selected individual. Ships are
examined one by one, as they are listed within individual, and
they are placed on the cheapest possible position on the given
berth. When all vessels are allocated within their berths, the
procedure sorts vessels in the descending order of their costs
in given allocation. Ships are now taken one by one according
to this new order, and associated lists are examined. If there
is a cheaper position, the corresponding vessel is moved there,
even if that causes the change of the berth for this vessel.
This procedure is applied to all l vessels. In addition, due
to the selection of cheaper positions for some of the vessels,
the order of service of vessels on berths can be changed.
Therefore, this part of the improvement process is completed
by performing the corresponding changes in the representation
of the improved individual.

Finally, each improved individual is subject to a local
search procedure. The applied local search algorithm examines
if it is possible to reduce the total cost by rearranging the order
of vessels on a single berth. In this phase, it is not allowed to
create some new conflicts by the perturbation of vessels. i.e.,
vessels can change their positions only if that new allocation
is not producing any conflict with vessels on adjacent berths.

After the improvement procedure is finished, individuals
are evaluated in means of calculating their fitness values in
order to enter the selection process for creating the next
generation. The steps described above are iteratively applied
until one of the EA stopping criteria (time limit or maximal
number of generations) is met. The pseudo-code of our EA is
presented in Fig. 7.



EAforMCHBAP()
Begin;

Initialize(nEA);
popID=1;
globalBest=Infinity;
minT=Infinity;
While (SessionTime ≤ RunTime) && (popID ≤ maxGen) do

For each individual do
µGA = 0.9∗popID/maxGen;
newindividual1← InsertMutation(noGenes,µGA);
newindividual2← SwapMutation(noGenes,µGA);
newindividual3← InversionMutation(noGenes,1-µGA);
newindividual4← ScrambleMutation(noGenes,1-µGA);

End;
For noImprovements individuals do

individualID = TournamentForImprovement(size1, cost);
newindividualI= Improve(IndividualID);
newindividualI=BerthLocalSearch(newIndividualI);

End;
Calculate Cost for each individual;
If bestCost(popID)<globalBest then

Update globalBest;
Update minT;

End;
eliteNO= nEA/3;
Copy best eliteNO individuals to the new generation;
size1NO=Round[(nEA-elitNO)*0.4];
Choose size1NO individuals through tournaments of size1;
size2NO=nEA-elitNO-size1NO;
Choose size2NO individuals through tournaments of size2;
popID ← popID + 1;

End;
End;

Fig. 7. Optimization Based EA for MCHBAP

IV. EXPERIMENTAL EVALUATION

In our computational experiments, we used the set of real
life instances for BAP proposed in [3]. These real-life instances
are generated from the example that involves 21 vessels, 12
berths and the time horizon of 54 units [3]. This example is
further extended by adding new vessels; up to 28 (see Fig. 8).

The proposed EA approach is coded in the Wolfram Math-
ematica v8.0 programming language. All tests were conducted
on a computer with an Intel Pentium 4, with 3.00-GHz CPU
and 512 MB of RAM running the Microsoft Windows XP
Professional Version 2002 Service Pack 2 operating system.
It is important to note here that Wolfram Mathematica v8.0
interprets instructions which may prolong the execution time
of the algorithm. If faster execution is required, it is necessary
to apply the converter that transforms program into C, Java,
or some other conventional programming language.

The set of preliminary computational experiments is per-
formed in order to determine the values of EA parameters that
lead to the best results of the algorithm. Finally. the following
setting is adopted. Number of individuals in population nEA
is set to 20, while the maximal number of generations, i.e.,
max Number Generations is 40. Smaller tournament size,
size1 is equal to 3, and larger tournament size, size2 has the
value of 5. Probability of mutation µEA depends on the index
of population as it is described in previous section. The number
of individuals to be improved in each generation is set to 5.

The proposed EA approach is compared with commercial
CPLEX solver version 11.2 and VNDS-MIP meta-heuristic
from [5]. Time limit for EA is set to 10 minutes of CPU
time, and the EA was run 10 times on each test example. The
summary of EA results and comparisons with CPLEX and
VNDS-MIP method are presented in Table II.

TABLE II. COMPUTATIONAL RESULTS ON REAL-LIFE TEST
EXAMPLES: m = 12, T = 54

EA CPLEX VNDS-MIP T.Lim.
l COST Time COST Time COST Time (sec.)

21 4779 196.35 24562 3698.41 15424 494.30 3600
22 4983 119.44 16334 7434.44 10108 961.13 7200
23 5193 189.85 96549 7404.73 14110 1207.77 7200
24 5643 109.25 6594 7429.48 9521 1609.55 7200
25 5953 156.82 13262 18709.60 91620 1569.54 18500
26 6298 156.12 26614 18716.10 77439 24742.42 18500
27 6478 188.95 26679 18638.50 69143 3215.10 21600
28 6980 324.74 8418 44530.70 63249 7779.35 43200
av. 5788.38 180.19 27376.5 15820.24 43826.75 5197.39 15750

Table II is organized as follows. Number of vessels is
presented in the first column. Columns 2 and 3 contain the
average best objective function value and the corresponding
average CPU time obtained by 10 EA runs each lasting 10
minutes. The best found cost obtained by CPLEX solver within
the given time limit and the required CPLEX running time
are given in columns 4 and 5. The best objective value and
the average required CPU time of the VNDS-MIP heuristic
are presented in columns 6 and 7. The specified CPLEX and
VNDS-MIP time limit for each example is presented in the
last column of Table II.

From the presented results it can be seen that for all tested
instances, the proposed EA approach showed to be superior
comparing to VNDS-MIP and CPLEX with respect to both
solution quality and CPU time. The EA produced solutions
with significantly lower objective values in each of the 10 runs.
In average, the best cost obtained by EA was around 4.7 times
lower compared to the cost produced by CPLEX, and 7.6 lower
than the best cost reached by VNDS-MIP heuristic.

The average CPU time of the proposed EA was shorter
compared to corresponding average CPU times of both CPLEX
and VNDS-MIP method. Note that EA is coded in Wolfram
Mathematica v8.0 programming language and tested on slower
computer under Microsoft Windows operating system with
interpreter, while CPLEX and VNDS-MIP are written in C++
with optimized code and compiled and executed under Linux
operating system on much faster computer. Even then, the
EA was approximately 87.8 times faster than CPLEX and
approximately 28.8 times faster then VNDS-MIP. From these
preliminary results it can be concluded that EA produces
promising results in testing on real life BAP data sets.

It is worth noting that EA actually produced optimal
solution in all 10 runs. Contrary to the MIP based solvers,
combinatorial exact algorithm developed in [15] is able to
solve these test examples within reasonable CPU time. In
fact, it is faster for instances with up to 27 vessels, but
EA required less CPU time to find optimal solution for the
largest example. This conclusion supports the need to develop
heuristic approaches for MCHBAP.



Fig. 8. An example of real–life MCHBAP solution

V. CONCLUSION

Evolutionary based algorithm (EA) to solve Minimum Cost
Hybrid Berth Allocation Problem with fixed handling times
of vessels (MCHBAP) is presented. We proposed EA based
only on mutation of genes in the individuals, involving four
types of mutations. In addition, we proposed optimization
steps after mutations in order to improve few individuals in
each generation. Two different optimizations where developed
for chosen individuals: the first one allows changing the
associated berth of vessel while the second performs local
search within berth, and allows only perturbations of vessels
order within the chosen berth. As future work, more exhaustive
experimental evaluation on both real and artificially generated
random examples are to be performed, in order to additionally
evaluate the proposed EA. Moreover, the comparison with
some other meta-heuristic methods, especially with the neigh-
borhood based ones, is also needed.
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