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Abstract. Characterization of a graph by its spectrum is a very attrac-
tive research problem that has numerous applications. It is shown that
the graph is not necessarily uniquely determined by its spectrum in the
most general case, i.e., there could be several non-isomorphic graphs cor-
responding to the same spectrum. All such graphs are called cospectral.
However, in most of the cases, it is important to find at least one graph
whose spectrum is equal to a given constant vector. This process is called
Spectral Reconstruction of Graph (SRG) and it is known as one of the
most difficult optimization problems. We address the SRG problem by
the metaheuristic methods, more precisely, by Basic Variable Neighbor-
hood Search (BVNS) and improvement-based Bee Colony Optimization
(BCOi) methods. The resulting heuristics are called SRG-BVNS and
SRG-BCOi, respectively. Both methods are implemented in such a way
to take into account the graph properties defined by its spectrum. We
compare the performance of the proposed methods with each other and
with the results obtained by other approaches from the relevant literature
on the reconstruction of some well-known graphs.

Keywords: Spectral graph theory; spectral distance; cospectral graphs;
metaheuristics.

1 Introduction

Graphs are mathematical objects defined as 2-tuples G = (V,E) [8], where
V = {v1, v2, . . . , vn}, represents the set of vertices vi, while E ⊆ V × V denotes
the connections (relations) between the pairs of vertices and is called the set of
edges. If there is a connection (edge) between vertices vi and vj , we say that
{vi, vj} ∈ E and that vertices vi and vj are adjacent. Graphs are used to model
numerous problems in science, engineering, industry, etc. Usually, V is finite set,
however, the infinite cases are also studied in the literature starting with [22].
In this paper, we consider only finite and undirect graphs.
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The simplest graph representation is by the Adjacency matrix A with ele-
ments 0 or 1 defined as follows:

aij =

{
1, if {vi, vj} ∈ E;
0, otherwise.

If graph is undirected, A is symmetric, i.e., aij = aji.The degree of vertex vi
(denoted by di) in graph G represents the number of vertices adjacent to vi,
i.e., the number of edges having vi as an end-vertex and it is calculated as
di =

∑n
j=1 aij . Eigenvalues λi, i = 1, 2, . . . , n for the graph G are actually the

eigenvalues of matrix A, i.e., the roots of its characteristic polynomial PG(x) =
det(xI − A). As the adjacency matrix A is symmetric its eigenvalues are real
numbers. The set of all eigenvalues of graph G is called spectrum. It can contain
negative, positive values and zeros, with some repeated values. It is usual to
represent the spectrum as a non-increasing array of values λ1 ≥ λ2 ≥ · · · ≥ λn.
Then, the largest eigenvalue λ1 of graph G is called index. An array x such that
Ax = λx is known as eigenvector (corresponding to the eigenvalue λ) of graph
G, and it actually represents the eigenvector of matrix A.

Spectral graph theory (SGT) [11, 23] studies graphs based on their adjacency
matrix, more precisely, based on the eigenvalues and eigenvectors of this matrix.
In recent literature, some other matrices associated with graphs are defined and
analyzed, such as Laplacian matrix and signless Laplacian matrix ([11], section
1.3). However, they will not be considered in this paper. SGT has important
applications in various fields of computer science [13], some of them including
graph recognition problems [5, 7, 13, 19] as graphs represent natural models for
various types of objects. It has been shown in the literature that some special
classes of graphs, e.g., complete graphs, paths, cycles, are determined (to the
isomorphism) by the spectrum with respect to the adjacency matrix A. However,
it has been proved that it does not hold in the general case, i.e., an arbitrary
graph cannot be fully characterized by its spectrum, and there may exist non-
isomorphic graphs having the same spectrum. In particular, it has been shown
that trees cannot be characterized by a spectrum, nor can molecules in chemistry.
Non-isomorphic graphs that have identical spectra are called cospectral. In [17,
24], the number of non-isomorphic cospectral graphs is analyzed in relation to the
three mentioned matrices for all graphs with n ≤ 11 vertices. Graphs with n = 12
vertices are considered in [3]. In these papers, it was noticed that the number
of graphs with non-isomorphic co-spectral mates decreases from n = 10 with
respect to the total number of graphs with the same number of vertices. Based
on that observation, a hypothesis has been introduced stating that graphs with
a large number of vertices (for n → ∞) may be determined by their spectrum.
The hypothesis is still an open problem in SGT.

Our work is inspired by the results published in [5] and presents their general-
ization and expansion. In the first part of [5], the authors discussed the problem
of Spectral Reconstruction of Graphs (SRG) [9] with the help of AutoGraphiX
(AGX) software package developed at GERAD Institute in Montreal [1, 6]. AGX
uses the Variable Neighborhood Search (VNS) metaheuristic method [18, 21] to
find graphs that have extreme values of selected invariants or their combinations.
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We have also applied AGX, optimized its execution by adding new constraints
that enable to reduce the search space, and consequently, to decrease the time
required to obtain the results.

As AGX is a general purpose software, it obviously contains many auxil-
iary functions that are not necessary for the considered problem. Therefore, we
do not expect its good performance and we propose the application of meta-
heuristic methods to efficiently find a graph with the given spectrum. We have
implemented a basic version of VNS (BVNS) and an improvement-based Bee
Colony Optimization (BCOi) [14, 15] to tackle the SRG problem. The methods
are called SRG-BVNS and SRG-BCOi, respectively. The stochastic nature of
metaheuristic methods allows us to perform restarts from different random ini-
tial graphs, and to generate mutually non-isomorphic cospectral graphs (if any).
However, finding all cospectral graphs still remains a challenging task because it
is actually a NP-hard optimization problem: it is necessary to examine all graphs

with n vertices and m edges and the number of such graphs is

(
n(n− 1)/2

m

)
,

i.e., the number of ways m edges can be distributed in n(n− 1)/2 places.
The remainder of this paper is organized as follows. Section 2 provides a

brief overview of the relevant literature. The SRG problem is described in detail
in Section 3, specifying its complexity and some special cases in which there
are efficient algorithms for finding all non-isomorphic cospectral graphs with a
given spectrum. In Sections 4 and 5, the implementations of SRG-BVNS and
SRG-BCOi are described. The results obtained by applying the implemented
methods to some known graphs from the literature, are presented in Section 6.
Concluding remarks and guidelines for future work are given in Section 7.

2 Literature review

The study of graphs based on their spectra has become very popular in the past
two decades because the spectrum can be determined relatively quickly (the
computational complexity is, in the general case, O(n3), and for special classes
of graphs this complexity may be significantly reduced). Based on the spectrum,
various information can be determined on the structure of the corresponding
graph [9, 11, 19], especially on some parameters of the graph that require expo-
nential time for calculation. As already mentioned in the introduction, graphs
are not uniquely determined by the spectrum, i.e., for some graphs there exist
non-isomorphic cospectral graphs. However, due to its great importance, spectral
recognition of graphs is intensively studied in the literature [9, 17, 24].

The review paper [9] defines 4 basic problems that are considered in connec-
tion with spectral recognition of graphs: characterization of graphs with a given
spectrum; construction (exact or approximate) of a graph with a given spectrum;
spectral similarity of graphs; and spectral perturbations of graphs. Let us note
once again that all these problems are related to the spectrum of the graph and
use spectral distance. This distance is defined for graphs with the same number
of vertices as the distance between their spectra. Various types of distances may
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be used, such as Euclidean, Manhattan or some other distance between ordered
sequences of eigenvalues, i.e., vectors in the n-dimensional space.

The first problem (characterization of a graph with the given spectrum) [9]
involves describing as many of its properties as possible based on the spectrum.
For the second problem, it is necessary to find a graph whose spectrum is rep-
resented by a given vector (which actually represents the SRG problem that is
considered in this paper). The characterization of a graph by the spectrum is
achieved by solving the optimization problem representing minimization of the
spectral distance between the given vector and the spectrum of the constructed
graph. The solution to this problem does not have to be unique, several mutu-
ally non-isomorphic cospectral graphs can be obtained. It is obvious that the
cospectral graphs are at a distance equal to zero, which is the minimal value
of any spectral distance. The spectral distance can be considered as a measure
of graphs’ similarity, i.e., we say that the two graphs are similar if their spec-
tral distance is small. Similar graphs are obtained from each other by small
perturbations (changes in the structure or spectrum of graphs). Examples of
perturbations are removing or adding edges, moving edges from one position to
some other, and so on.

One of the first algorithms for spectral reconstruction of graphs based on
the Laplacian matrix was developed in [7]. It is based on the Tabu Search (TS)
metaheuristic method, starts from a random graph with n vertices and tries to
minimize the spectral distance. The algorithm was tested on several classes of
networks (random, regular, cluster graphs, etc.).

The VNS method is used in [5] indirectly, through the AGX program pack-
age. The authors have performed the reconstruction of some classes of graphs
based on Euclidean and Manhattan spectral distances defined with respect to
the various matrices associated with the graph. Graphs of up to 20 vertices have
been analyzed and the number of successful reconstructions in 100 restarts was
reported. The stopping criterion in each execution was 100,000 evaluations of
the objective function (i.e., calculations of the spectral distance), and the ini-
tial solution was always a randomly generated graph. The paper [5] served as
the inspiration for our work. We aim to maximally exploit the information that
can be obtained about the target graph from its spectrum and to develop ef-
ficient implementations of our methods and to generate the desired graph in
the shortest possible time. By repeated restarts, it is possible to obtain several
non-isomorphic cospectral graphs.

3 Finding graph with a given spectrum

As it is already mentioned, SRG implies finding (one or more) graphs whose
spectrum is equal to a given vector. In this paper we use the Euclidean distance,
that is (among others) used in [5] as well. Let C = (c1, c2, . . . , cn) be a given
vector, let G = (V,E) be a graph having n vertices, and let S = (λ1, λ2, . . . , λn)
represent its spectrum. It is necessary to perform transformations of the graph
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G with an aim to minimize (nullify) the spectral distance defined by Eq. (1).

d =
√
(c1 − λ1)2 + (c2 − λ2)2 + · · ·+ (cn − λn)2. (1)

First, we applied AGX software [1, 6]. It is an interactive software package
designed to find extreme graphs, i.e., graphs that minimize or maximize certain
graph invariant or a function of graph invariants. A graph invariant is a pa-
rameter of a graph that is independent of the vertex and edge labeling. Graph
invariants are, for example, the index of a graph (i.e., the largest eigenvalue
λ1), minimum (δ) and maximum (∆) vertex degree, etc. [8, 11]. Searching for
extremal graphs, AGX uses an optimization module based on the VNS meta-
heuristics and generates the corresponding graph examples for some special cases
(for some given values of n). The researchers use these experimentally obtained
graphs to set hypotheses for the general case and then try to prove them theoret-
ically, ”by hand” or applying some automatic theorem prover [2, 5, 6]. The latest
version of the AGX software package (AGX 3.3.9) as well as the accompanying
documentation can be downloaded from the Internet address
https://www.gerad.ca/Gilles.Caporossi/agx/AGX/AutoGraphiX.html.

To solve SRG problem, we need to ask AGX to minimize the Euclidean dis-
tance between the given constant vector C and the ordered vector of eigenvalues
of the required graph. To make things easier for AGX, we exploit the fact ([11],
p. 85) that the number of edges in a graph can be calculated by the following

equation m =
1

2

n∑
i=1

λ2
i . As the input vector C is actually the spectrum of the

desired graph, we can calculate the number of its edges by Eq. (2), i.e., using
the scalar product of the vector C with itself.

m =
1

2

n∑
i=1

c2i . (2)

On the other hand, the number of edges in the graph equals one half the sum
of all elements of the adjacency matrix A, and we can reduce the search space
for AGX by equalizing this sum with the scalar product of the vector C with
itself. The block-diagram of the corresponding optimization task performed by
AGX softvare is presented in Fig. 1. Constant vector C is an input parameter,
while the adjacency matrix A is provided by AGX in the process of graph gener-
ation/transformation. The initial graph is generated randomly with the number
of edges depending on the input vector C according to Eq. (2), while all other
graphs are obtained by performing transformations (that preserve the number
of edges) of the currently best found graph. The goal is to minimize the spectral
distance d (given by Eq. (1)) between input vector C and graph defined by the
adjacency matrix A, and therefore, the loop is executed until d becomes zero.
However, it may take to much time and it is necessary to define some stopping
criterion that will interrupt the execution of AGX even if the solution is not
found. This is required also for fair comparison of AGX with other approaches.

It is important to note that AGX is a stochastic search engine, and there-
fore, each of its executions can give a different result, with respect to either the



MH for SRG 6

Fig. 1. Minimization of spectral distance according to AGX software

solution itself (when a non-isomorphic cospectral graph is obtained) or the time
required to find the same graph. Consequently, for the analysis of AGX perfor-
mance, it is necessary to repeat executions and determine some average (mean)
results. Although AGX cannot guarantee a complete search of the solution space
(graphs with a given number of vertices and edges), repeating the execution al-
lows to find some non-isomorphic cospectral graphs (if any). Of course, the fact
that AGX failed to generate a cospectral graph, i.e., it obtained the same solu-
tion in all executions, does not imply that there are no non-isomorphic cospectral
graphs for the given graph. As it is already mentioned, in order to find all non-
isomorphic cospectral graphs for a given graph, it is necessary to perform a
complete search of graphs with the same number of vertices n and edges m. For
example, for a graph with n = 8 vertices and m = 9 edges, it is necessary to
examine 6,906,900 graphs. It is clear that (in the general case) as the number
of vertices increases, the complexity of complete search is increasing nonlinearly.
On the other hand, there are algorithms developed for some special classes of
graphs that employ a priori knowledge about these graphs in order to reduce the
number of analyzed graphs. An example of such an algorithm is described in [12].
The authors considered Smith graphs (whose spectrum is limited to the interval
[-2,2]). They identified transformations that translate one Smith graph into an-
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other, mutually non-isomorphic cospectral with the starting one, and developed
an algorithm for generating all such graphs. Our goal is to develop algorithm
that can be applied to any graph, and therefore, we cannot compare against
the methodology proposed in [12]. We develop two metaheuristic methods (VNS
and BCOi) that are compatible with the block-diagram from Fig. 1, however,
transformations of solutions are performed in more systematic ways.

4 Variable neighborhood search for SRG

In this section we briefly recall some information about the VNS method and
then describe its implementation for the considered SRG problem.

4.1 Variable neighborhood search

Variable Neighborhood Search (VNS) is a trajectory-based metaheuristic method
proposed in [21]. It uses distances between solutions and employs one or more
neighborhood structures to efficiently search the solution space of a considered
optimization problem. VNS uses some problem-specific local search procedure(s)
in the exploitation phase and changing distances between solutions to ensure the
exploration of solution space. The role of exploration (diversification, perturba-
tion) phase is to ensure escaping from local optima traps. VNS is widely used
optimization tool with many variants and successful applications [18] and we
used its basic variant (BVNS) for the SRG problem.

Algorithm 1 Pseudo-code for BVNS method

procedure BVNS(Problem input data, kmax, STOP)
xbest ← InitSolution()
repeat

k ← 1
repeat

x′ ← RandomSolution(xbest,Nk) ▷ Shaking
x′′ ← LS(x′) ▷ Local Search
if (f(x′′) < f(xbest)) then ▷ Neighborhood Change

xbest ← x′′

k ← 1
else

k ← k + 1
end if
Terminate← StoppingCriterion(STOP )

until (k > kmax ∨ Terminate)
until (Terminate)
return (xbest, f(xbest))

end procedure
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BVNS employs a single type of neighborhood and consists of three main
steps: Shaking, Local Search, and Neighborhood Change (see Alg. 1). The role
of Shaking step is to ensure the diversification of the search. It performs a random
perturbation of xbest in the given neighborhood and provides a starting solution
x′ to the next step. Local Search tries to improve x′ by visiting its neighbors with
respect to the selected neighborhood. After the Local Search, BVNS performs
Neighborhood Change step in which it examines the quality of the obtained
local optimum x′′. If it is better than xbest, the search is concentrated around
it (the global best solution xbest and the neighborhood index k are updated
properly). Otherwise, only k is changed. The three main steps are repeated until
a pre-specified stopping criterion is satisfied [18].

The main parameter of BVNS is kmax, the maximum number of neighbor-
hoods for Shaking. Actually, the current value of k represents the distance be-
tween xbest and x′ obtained within the Shaking phase. BVNS is known as the
First Improvement (FI) search strategy because the search is always concen-
trated around xbest: as soon as this solution is improved, k is reset to 1.

4.2 Implementation details

Let us remind that the number of edges in the graph, which we want to generate
based on the given spectrum C, is known, i.e., it can be calculated by Eq. (2).
Therefore, we have implemented BVNS because it is enough to consider only
one type of neighborhood: moving an edge from one place to another. This
neighborhood preserves the number of edges in the graph. The resulting graphs
do not have to be connected because this condition is not set for the starting
graphs either (although all analyzed examples are connected graphs, they may
have non-connected cospectral mates).

The solution of the considered problem is a graph denoted here by g, which
should have a spectral distance (1) from the given constant vector C less than
some predetermined constant ε. The initial solution is chosen randomly from all
graphs with a given number of vertices n and edges m calculated by Eq. (2).
Then, the transformations of the initial graph are performed following the steps
of BVNS. The solutions in BVNS are represented by three data structures in
order to reduce the computational complexity required to find neighbors of the
considered graph in Local Search, as well as a random graph at a given distance
(with respect to the number of transformations). Obviously, memory usage is
sacrificed to increase the efficiency.

The first structure is the adjacency matrix A = [aij ]n×n. It is needed for
calculating the spectrum. The second structure contains the lists of adjacent
g[i].ls and non-adjacent g[i].ln vertices for each vertex i in graph g. In addition,
for each vertex i, it is necessary to always know the number of neighbors/non-
neighbors, and this information is stored in the arrays g[i].ns and g[i].nn. All
these data structures allow to perform any transformation of the graph in a
constant number steps O(1). Each deleted vertex is replaced by the last one in
the list and the corresponding number of elements is reduced by one (−− ns[i]
and − − nn[i1]). A new vertex is always added to the end of the list, while
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the number of list elements is increased by one (nn[i] + + and ns[i1] + +).
Of course, it must be checked that some of the used lists are not empty. The
mentioned operations are performed on randomly selected pairs of vertices (i, j)
and (i1, j1) in the Shaking, while they are applied to all pairs of vertices from
the neighborhood of the current solution in the Local Search. Of course, there
are still some steps that cannot be performed in less than polynomial (or at least
log n) number of operations.

5 Bee Colony Optimization for SRG

This section contains the brief description of Bee Colony Optimization (BCO)
metaheuristic, more precisely its improvement-based variant BCOi, as well as
the implementation of BCOi for finding graphs with given spectrum.

5.1 Bee Colony Optimization

Bee Colony Optimization (BCO) is a population-based metaheuristic that mim-
ics the foraging process of honeybees in nature [15]. The population consists of
artificial bees, each responsible for one solution of the considered problem. Dur-
ing the execution of BCO, artificial bees build (in the constructive BCO variant,
BCOc) or transform (in the improvement-based BCOi) their solutions in order
to find the best possible with respect to the given objective. The BCO algorithm
runs in iterations until a stopping condition is met and the best found solution
(the so called global best) is reported as the final one.

Algorithm 2 Pseudo-code of the BCO algorithm

procedure BCO(Problem input data, B,NC, STOP )
repeat ▷ Main BCO loop

for b← 1, B do ▷ Initializing population
Sol(b)← SelectSolution()

end for
for u← 1, NC do

for b← 1, B do ▷ Forward pass
EvaluateMove(Sol(b))
SelectMove(Sol(b))

end for
EvaluateSolutions() ▷ Backward pass
Loyalty()
Recruitment()

end for
Update(xbest, f(xbest))
Terminate← StoppingCriterion(STOP )

until (Terminate)
return (xbest, f(xbest))

end procedure



MH for SRG 10

Each BCO iteration contains several execution steps divided into two alter-
nating phases: forward pass and backward pass (see Alg. 2). Within forward
passes, all bees explore the search space by applying a predefined number of
moves and obtain new population of solutions. Moves are related to building or
transforming solutions, depending on the used BCO variant and they explore
a priori knowledge about the considered problem. When a new population is
obtained, the second phase (backward pass) is executed, where the information
about the quality of solutions is exchanged between bees. The solution’s quality
is defined by the corresponding value of the objective function. The next step in
backward pass is to select a subset of promising solutions to be further explored
by applying loyalty decision and recruitment steps. Depending on the relative
quality of its current solution with respect to the best solution in the current
population, each bee decides with a certain probability should it stay loyal to
that solution and become a recruiter that advertises its solution by simulating
waggle dance of honeybees [15]. Obviously, bees with better solutions should
have more chances to keep their solutions. A non-loyal bees are referred to as
uncommitted followers, they abandon current solutions, and have to select one
of the solutions held by recruiters. This selection is taken with a probability,
such that better advertised solutions have greater opportunities to be chosen for
further exploration. In the basic variant of BCO there are only two parameters:
• B – the number of bees involved in the search and
• NC – the number of forward/backward passes in a single BCO iteration.

5.2 Implementation of SRG-BCOi

As in BVNS, we used multiple data structures to represent solutions. The first is
adjacency matrix, represented by 2-D arrays in the C(C++) programming lan-
guage. For each bee b we introduced variable A[b] as array of arrays containing
n ∗ n elements. Therefore, our data structure A is actually an 3-D array. If in
the solution handled by bee b, vertices i and j of the corresponding graph are
connected, then A[b][(i−1)∗n+j−1] = A[b][(j−1)∗n+ i−1] = 1 (as A is sym-
metric matrix), otherwise, the corresponding elements are equal to 0. We chose
1-D array for storing matrix because it is used in a version of Jacobi algorithm
for calculating eigenvalues, which we found on the internet [4]. Our algorithm
heavily relies on powerful data structures vector and unordered set from C++.
Unordered sets take (approximately) constant time to perform insert, delete and
find operations, which is very important for obtaining efficient implementation
of iterative algorithms. These data structures are used to model lists of adjacent
and non-adjacent vertices for a given vertex vi. It is important to note that here
the dimension of used vectors and unordered sets increases by one, for counting
bees in our population-based BCOi algorithm. To increase efficiency even more,
we store in a separate vector (for each bee) non-isolated vertices, i.e., the ones
that have at least one neighbour. We use this vector to select the first end-vertex
of an edge to be removed. In addition, we list vertices that have less than n− 1
adjacent vertices, to efficiently select the end-vertices of an edge to be added.
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An initial population of each BCOi iteration is constructed randomly, by
adding edges starting from an empty graph (containing only vertices). For each
initial solution, we calculate spectrum by Jacobi algorithm and its spectral dis-
tance from the input vector C to evaluate the obtained solutions and to check
if we already found the desired graph.

Forward pass involves the required transformations. Each transformation
consists of moving a (randomly selected) number (o) of edges from one position
to another one. As the first step, we need to select a random value for variable
o from the interval [1, 2 ∗m]. The range for o is determined experimentally, hav-
ing in mind that we should enable performing significant changes of the current
solution. Although the total number of edges to be moved is only m, we allow
o to take larger values, i.e., to move some edges more than once and, possibly,
increase the diversity of the obtained solution. The value for o is determined for
each bee separately, ensuring various treatment of the same solutions assigned
to different bees (after recruitment). The second step in solution transformation
assumes substituting o times an existing edge with an non-existing one. To de-
termine the edge to be removed, we randomly select an element i from the set
of non-isolated vertices (as the first end-vertex of the corresponding edge) and
then pick randomly one of the vertices (j) adjacent to i from the corresponding
unordered set. In a similar way, we select an edge (i1, j1) to be included in the
transformed graph. Vertex i1 is selected randomly from the set of vertices that
have less than n − 1 adjacent vertices, while j1 is determined as a random ele-
ments from the set of non-adjacent vertices of i1. Random selection from a set
usually takes linear time but we found smart trick to avoid it, on the internet
[20]. When o transformations are completed, the spectrum of the resulting graph
is calculated by Jacobi algorithm and used to determine spectral distance from
the input vector C. Among all B solutions, the one with the smallest spectral
distance is identified and used to check if we already found the desired graph or
if the current best solution is improved.

The backward pass is performed in standard way described in [15]. The prob-
ability that bee is loyal to the current solution equals the normalized value of
the corresponding objective function, while the recruitment is performed using
the roulette wheel composed of solutions advertised by recruiters. Redundant
solution representation helps to reduce the complexity of these steps also.

6 Experimental evaluation

Here we present the results of applying AGX software and the proposed SRG-
BVNS and SRG-BCOi methods to the reconstruction of some graph examples
with a small number of vertices.

6.1 Testing environment

SRG-BVNS method is implemented in the R language ([16]) within RStudio Ver.
2022.02.0 for Windows and executed on Intel Core i7-11800H 2.30GHz (24MB
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Cache, up to 4.6GHz) 16GB DDR4, 512GB SSD, NVidia GeForce RTX 3050 Ti,
GDDR6 4GB VRAM. AGX software is run on the same computer. SRG-BCOi
is coded in C++ and executed on Intel(R) Core(TM) i3-7020U CPU 2.30GHz,
8GB DDR4, 512 GB NVMe SSD, Nvidia GeForce MX130 with 2GB VRAM.
In order to be able to ensure fair comparison of the tested methods, we set
the stopping criterion for all of them to be the maximum number of objective
function evaluation. As in [5], this number is set to 100000.

SRG is specific optimization problem because we know the optimal value of
the objective function (when the optimal solution found, the spectral distance
between the corresponding graph and a given input vector equals zero). There-
fore, we ”just” need to find a graph with n vertices and m (calculated by Eg. (2))
edges satisfying the condition d = 0, where d is calculated by Eq. (1). This also
means that we can stop the execution of the algorithms after the optimal solu-
tion is found. As we already noted, the solution space (depending on n and m)
can be quite large, making our task very hard.

All of the compared methods are stochastic search algorithms, and therefore,
we need to execute them repeatedly (for different values of random generator’s
seed) in order to evaluate their stability and performance. We set the number
of repetitions to 100 as it ensures statistical significance of the obtained results.
As the performance measure, we report the number of successful runs, i.e., the
number of graph reconstructions in 100 repetitions, as well as the average num-
ber of required objective function evaluations. In the cases when solution was
not found in each of 100 executions, we report the average value of the objective
function. Regarding the parameters of the compared methods, we used default
settings for AGX and performed some preliminary experiments to determine the
values of SRG-BVNS and SRG-BCOi parameters. For SRG-BVNS the parame-
ters are specified as follows: kmax = m and we apply a FI strategy in LS in order
to reduce the time spent in the intensification phase. Parameters of SRG-BCOi
are set to the following values: B = 6 and NC = 30.

6.2 Results of spectral reconstruction of some graph examples

The graphs that we selected as the test examples for comparison are presented
in Fig. 2 and Fig. 3. These are graphs with 8, 9, and 10 vertices that have been
identified in [10] as suitable models for multiprocessor systems. To be able to
control the experiment and to replicate the results, we used a fixed set of values
for seed in SRG-BVNS, and SRG-BCOi. For the sake of simplicity, seed value
in the i-th execution equals i. To the best of our knowledge, it is not possible to
control seed value in AGX and its results may be slightly different in some new
executions. We hope that 100 repetitions is enough to have a general judgement
about AGX performance. The comparison results of these three algorithms are
presented in Table 1.

Table 1 is organized as follows: the first column contains the name of the
graph example used to define the input vector C; the remaining columns are
grouped by three and they contain the results for each of the compared methods.
The first group of three columns show the number of successful reconstructions,
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Table 1. Comparison of AGX, SRG-BVNS, SRG-BCOi

Graph AGX SRG-BVNS SRG-BCOi
#graphs av. eval. av. obj. #graphs av. eval. av. obj. #graphs av. eval. av. obj.

Ω8,1 42 65676.66 0.56 100 445.76 0.00 100 595.37 0.00
Ω8,2 16 88186.25 0.23 100 735.64 0.00 100 339.73 0.00
Ω8,3 100 1390.70 0.00 100 324.88 0.00 100 1017.03 0.00
Ω8,4 45 58939.98 0.20 100 489.14 0.00 100 1557.70 0.00
Ω8,5 100 1698.89 0.00 100 336.16 0.00 100 123.73 0.00
Ω8,6 100 2454.73 0.00 100 409.97 0.00 100 *10288.97 0.00
Ω8,7 100 4563.33 0.00 100 415.99 0.00 100 11818.75 0.00
Ω9,1 98 23256.09 0.05 100 369.55 0.00 100 446.10 0.00
Ω9,2 0 100000.00 0.27 100 1182.50 0.00 100 1611.08 0.00
Ω10,1 0 100000.00 0.97 100 1143.97 0.00 100 1866.42 0.00
Ω10,2 95 20094.89 0.06 100 1513.41 0.00 46 *75939.58 1.01

∗ - the results are obtained when 2 (out of 6) initial solutions are set to the current best solution.

the average number of function evaluations, and the average value of the objec-
tive function for AGX, respectively. The corresponding results for SRG-BVNS
and SRG-BCOi are presented in the columns 5-7 and 8-10.

Comparing the results from Table 1 we can conclude that both problem-
oriented metaheuristic implementations outperformed AGX (except for one ex-
ample where AGX performed better than SRG-BCOi). This result was expected
having in mind that AGX is a general-purpose graph optimization software.
SRG-BVNS was able to find a graph with given spectra in all executions, while
SRG-BCOi had troubles with the last tested graph, the Petersen graph Ω10,2.
With respect to the average number of objective function evaluations, the supe-
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riority of SRG-BVNS is evident in all but two examples, where SRG-BCOi man-
aged to reconstruct a graph faster. Our main conclusion is that single-solution
metaheuristic performs better for these examples and we believe that it is a con-
sequence of more systematic search with less randomness, that may lead to the
situations where some solutions are visited more than once. We tried to resolve
this problem by recording visited solutions in a hash table, however, it turned
out that searching this table is also time consuming.

7 Conclusion

We considered the problem of Spectral Reconstruction of a Graph (SRG) and de-
veloped the Basic Variable Neighborhood Search (BVNS) and the improvement-
based Bee Colony Optimization (BCOi). The SRG problem consists of finding at
least one graph whose spectrum coincides with a given vector. The implemented
metaheuristic methods take into account the well-known relationship between
the number of edges in the graph and its spectrum. The results of applying SRG-
BVNS and SRG-BCOi to the reconstruction of some known graphs are compared
with each other and with the results obtained using the AutoGraphiX (AGX)
package. They clearly show the superiority of the proposed SRG-BVNS imple-
mentation with respect to both solution quality and search speed measured by
the number of objective function evaluations needed for reconstruction. Potential
topics for future research include experiments with graphs of larger dimensions,
comparison with similar methods from the literature, and generation of more
(as much as possible) non-isomorphic cospectral graphs (if any). In addition,
we plan to incorporate other known connections between the parameters of the
graph and its spectrum in order to reduce the search space and speedup the ex-
ecution of our SRG-BVNS and SRG-BCOi methods. Other matrices associated
with graphs and other types of distances can be used as well.
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