
Parameter analysis of variable neighborhood
search applied to multiprocessor scheduling with

communication delays?

Tatjana Jakšić-Krüger[0000−0001−6766−4811],
Tatjana Davidović[0000−0001−9561−5339],

Vladisav Jelisavčić

Mathematical Institute of the Serbian Academy of Science and Arts,
Kneza Mihaila 36, 11000 Belgrade, Serbia
{tatjana,tanjad,vladisav}@mi.sanu.ac.rs

Abstract. When dealing with hard, real-life optimization problems,
metaheuristics methods are considered a very powerful tool. If designed
properly, they can provide high-quality solutions in reasonable running
times. The adequate implementation assumes, among other things, find-
ing the best combination of parameters, i.e., identifying their values that
correspond to a good performance on most of the test instances. The
machine learning methods have become standard practice for parameter
tuning and experimental evaluation of metaheuristic algorithms. Multi-
tude of methods have become simple to utilize due to development of R
library. Our goal is to contribute to the developing methodology of exper-
imental analysis of metaheuristic algorithms.We are specially interested
in Variable neighborhood search (VNS), a very popular metaheuristic
for more than 20 years with many successful applications. Its basic form
has a small number of parameters, however, each particular implemen-
tation can involve a problem-dependent set of parameters. This makes
parameter tuning a challenging task. We apply the analysis and tuning
of parameters to permutation-based VNS designed to schedule commu-
nicating tasks to multiprocessor systems of arbitrary topology. Our goal
is to further examine possible interactions between the considered pa-
rameters and their influence on the performance of the resulting VNS
algorithm. We apply the sophisticated approach to the tuning of VNS
parameters that relies on statistical methods and machine learning. The
obtained results are presented and discussed in this study.

Keywords: Stochastic algorithms, experimental evaluation, statistical
methods, parameter control.

? This research was supported by Serbian Ministry of Education, Science and Techno-
logical Development through Mathematical Institute SANU, Agreement No. 451-03-
9/2021-14/200029 and by the Science Fund of Republic of Serbia, under the project
”Advanced Artificial Intelligence Techniques for Analysis and Design of System Com-
ponents Based on Trustworthy BlockChain Technology”.

2 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

1 Introduction

Instead of developing a novel approach to some selected optimization problem,
our aim is to present a systematic view into the current state of the algorithm
design. Ideally, we are able to detect to which degree can different parts of al-
gorithm change the performance, to identify interactions between algorithm’s
parameters, and to propose suitable statistical methods for this kind of analy-
sis. Most often we deal with the choice between the time and the quality of a
solution. When the optimality of solution is not the imperative in the consid-
ered optimization problem, we are happy with the generation of an sub-optimal
solution in a short amount of time. Obviously, it is not possible to list all the pos-
sible scenarios one might encounter, and thus, our aim is to propose tactics for
algorithm design that performs well in the most frequently occurring situations.

There are numerous real-life optimization problems that belong to the com-
binatorial optimization class. The main characteristic of these problems is that
the solution space is finite or at most countably infinite [18]. Solution quality de-
pends on the value of a given objective function that needs to be optimized (min-
imized or maximized). Usually, combinatorial optimization problems are easy to
formulate but difficult for solving because the number of solutions grows expo-
nentially with the problem size. The application of exact methods is impractical
and using metaheuristics seems more appropriate [19]. The main characteristic
of metaheuristics is that they cannot guarantee the optimality of the generated
solutions, however, in practice they provide high-quality solutions very fast.

The intention of our study is to inspect the effectiveness of the well known
Variable neighborhood search (VNS) algorithm by the means of machine learn-
ing tools. VNS is known as the metaheuristic with small number of parameters,
the most important one being kmax [13, 17]. However, in practice an implemen-
tation of the VNS algorithm may depend on more parameters, which might be
distinguished as the model- and problem-specific. In order to design efficient
VNS implementation for the considered problem, we need, among other things,
to find the best combination of parameters, i.e., to identify their values that cor-
respond to a good performance on most of the test instances. As a case study, we
considered permutation-based VNS implementation for Multiprocessor schedul-
ing problem with communication delays (MSPCD) proposed in [8]. Due to the
problem complexity, numerous parameters were introduced requiring adequate
analysis of their influence to the algorithm’s performance, as well as of the in-
teraction between them. We believe that the gathered knowledge might be used
not only to predict the performance of the VNS algorithm depending on the
structure of test instances, but also as the recipe for the design and analysis of
future VNS implementations.

The remainder of this paper is organized as follows. We start with motiva-
tion and related work in algorithm experiments in the next section. Description
of the MSPCD problem and the corresponding permutation-based VNS imple-
mentation are given in Section 3. Section 4 presents the set of parameters and
the experiments that we conducted in order to identify their most appropriate
values. Section 5 concludes the paper.

Parameter analysis of VNS applied to MSPCD 3

2 Motivation and related work

Often in practice an problem-oriented heuristic algorithm suffers from limita-
tions such as getting stuck in local optimum, fast convergence to and plateauing
at the local optimum, influence of the initial configuration, etc. Metaheuristic
methods have been developed as general methods that enable avoiding some of
these shortcomings by balancing between the intensification and diversification
(exploration and exploitation) of the search [19]. We are particulary interested
in the VNS algorithm [13, 17], single-solution method that belongs to the class
of metaheuristics with the core engine supported by local search strategy. VNS
is a popular method, it has been applied to many optimization problems which
is why we are interested in contributing to its proper implementation design.

By examining extremely reach literature on the application of VNS, we have
noticed lack of systematic approaches to algorithm design. To the best of our
knowledge, the parameter tuning of VNS has always been performed by hand,
i.e., by preliminary comparison and evaluation on a sub-set of (more or less)
representative test instances. Often in practice, not only parameter values are
determined ad-hoc, but also the set of parameters that should be analysed. This
may result in missing some important parameters or some of the promising val-
ues. In addition, it becomes unsustainable for increasing number of algorithm’s
parameters. Therefore, we argue that manual analysis of stochastic algorithms
with dynamic design for modular or numerical parts is not objective. The auto-
matic tools of parameter analysis are necessary for various reasons: to help with
the authors’ bias, provide visualization and detect patterns that normally are
not possible with human eye.

The algorithm design of metaheuristic methods has been subject in many
papers in the literature [1, 4–6, 11, 14–16]. We are in particular inspired by work
of Mc’Geoch [16] which distinguishes between algorithm design, algorithm tun-
ing, and code tuning. Very often, to produce general and precise results, the
algorithmic experiments should take place on a scale between abstraction and
instantiation. In our case, the experimental goals are based on algorithm and
code tuning which take place in instantiation space. Our performance indica-
tors are selected so that we can analyse different design choices, from parameter
tuning to the modular parts of the VNS algorithm. Moreover, these indicators
are matched to the investigated parameters reported in the literature [8]. As a
performance measurements we are using solution’s quality, computational effort
(platform-independent) and CPU time (platform-dependent).

Having all that in mind, we chose to present our experimental analysis on
VNS implementation for MSPCD, proposed in [8], for all the aforementioned
reasons, as well as for the significance of the problem itself. This particular VNS
implementation allows to study multiple various (numerical and categorical) pa-
rameters. MSPCD represents an attractive combinatorial optimization problem
due to its importance in modern applications not only in computer science, but
in numerous other fields, such as team building and scheduling, organization of
production lines, cutting and packing. Although concentrated on the particular
VNS implementation as a case study, we believe that our approach can con-

4 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

tribute to the broader methodology that deals with experimental analysis of any
metaheuristic method.

3 Description of MSPCD problem and VNS
implementation

Implementation details of VNS for MSPCD are presented in [8] where the au-
thors have recognized several VNS parameters. Our goal is to continue this work
with regard to the parametric analysis of the VNS. Here, we provide the short
description of the problem, followed by the review of the VNS algorithm imple-
mentation.

3.1 Problem description

The Multiprocessor Scheduling Problem with Communication Delays (MSPCD)
can be defined as follows: given n tasks (modules or jobs) have to be scheduled
on a multiprocessor system with m identical processors connected in an arbitrary
way specified by the distance matrix Dm×m. This means that we need to decide
where and when each task will be executed in order that the total execution
time is minimized. For each task, given are its processing time (duration) pi,
as well as the list of its successors and the corresponding communication delays
(the amount of intermediate results required to complete task i) if these tasks
are to be executed on different processors. Knowing the successors of each task,
it is easy to reconstruct the corresponding list of predecessors and to complete
the information about precedence constraints between tasks defining the order
of task execution. More precisely, a task cannot start its execution unless all of
its predecessors are completed and all relevant data (defined by the communica-
tion delays) are transferred. Formal definition of MSPCD and the corresponding
mathematical formulation are presented in [9].

3.2 Variable Neighborhood Search algorithm and its parameters

VNS consists of three main steps: shaking (SH), local search (LS) and neighbor-
hood change (NC). The role of SH step is diversification, i.e., to prevent search
being trapped in a local optimum, while LS step has to ensure the improve-
ment of the current solution by visiting its neighbors (intensification) [13, 17].
The main advantages of VNS are its simplicity and a small number of parame-
ters. Basic variant of VNS [17] has a single parameter kmax maximal number of
neighborhoods considered, i.e., number of different neighborhood types and/or
maximal distance with respect to one neighborhood type. Recent implementa-
tions of VNS [13] may consider some additional parameters, however, sometimes
even kmax may be selected in such a way to be dependent on the problem input
data making VNS a parameterless method.

The general steps of VNS may be found in [13], together with various modi-
fications. VNS is known as ”a descent, first improvement method with random-
ization” [12] (pg. 3981) and here we refer to this variant as first-improvement

Parameter analysis of VNS applied to MSPCD 5

VNS (FI-VNS). The pseudo-code of FI-VNS is given in Alg. 1. It is an adap-
tation of the corresponding algorithm from [12] (pg. 3979, Algorithm 7) by the
inclusion of new parameters that we consider in the implementation of VNS for
MSPCD. More details about the performed changes is given in Section 4. As

Algorithm 1: Pseudo code of the FI-VNS algorithm

Input: problem input data, kmax, kstep, kmin, pplateau, MAX step
1 Initialization: xbsf = Init(), STOP = FALSE;
2 dstep = 0;
3 repeat
4 Apply kmin strategy;
5 k = kmin;
6 repeat
7 x′ = Sh(xbsf ,k);
8 x′′ = LS(x′);
9 k = k + kstep;

10 dstep++;
11 if (f(x′′) < f(xbsf)) then
12 xbsf=x′′; /* Move */
13 k = kmin;

14 else if (f(x′′) == f(xbsf)) then
15 prob = rand[0, 1];
16 if prob ≤ pplateau then
17 xbsf=x′′;

18 if dstep ≤MAX step then
19 STOP = TRUE;

20 until ((k > kmax) ||STOP);

21 until STOP ;

shown, a FI-VNS iteration starts from an initial solution xinic and runs its step
Sh, LS, and NC until the best-so-far solution (the current approximation of the
best solution xbsf) has been improved or until VNS explores kmax (the maximal
number) of neighbourhoods around the xbsf solution. The best-so-far solution
xbsf represents a global knowledge exchanged between the VNS iterations. In
particular, the initial xbsf solution is generated by applying Largest Processing
Time first (LPT) constructive heuristic and improving it by the local search
in the initialization phase (see Alg. 3, function Init). In the main VNS loop,
SH tries to move the search far from the current best solution. Then, once LS
is finished, the newly found solution x′′ is compared against the xbsf solution
(Alg. 1, line 9). If the improvement is made, the VNS iteration is reset to k = 1
and SH starts from the newly discovered xbsf solution. Otherwise, the value for
k increases and a VNS iteration terminates if k reaches kmax or if the stopping
criterion is satisfied. In both cases, the neighbourhood counter k is reinitialized
to kmin. As a consequence, the execution time might vary greatly from one itera-

6 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

tion to another, which is our source of inspiration to utilize the best improvement
BI-VNS strategy (see Alg. 2).

The second variant of the VNS algorithm is founded on the best-improvement
concept, described in [12] (pg. 3981, Algorithm 11), presented here as BI-VNS
(Alg. 2). For the purpose of demonstrating differences between the two VNS
variants, in the corresponding pseudo-codes we describe how global knowledge
is being utilized.

Algorithm 2: Pseudo code of the BI-VNS algorithm.

Input: problem input data, kmax, kstep, kmin, pplateau, MAX step
1 Initialization: xbsf = Init() STOP = FALSE;
2 dstep = 0;
3 repeat
4 Apply kmin strategy;
5 k = kmin;
6 xmin = xbsf ; /* current best */
7 repeat
8 x′ = Sh(xbsf ,k);
9 x′′ = LS(x′);

10 k = k + kstep;
11 dstep++;
12 if (f(x′′) < f(xmin)) then
13 xmin = x′′; /* Move */
14 else if (f(x′′) == f(xmin)) then
15 prob = rand[0, 1];
16 if prob ≤ pplateau then
17 xmin = x′′;

18 if (dstep ≤MAX step) then
19 STOP = TRUE;

20 until (k > kmax) || STOP ;
21 if (f(xmin) ≤ f(xbsf)) then
22 xbsf=xmin;

23 until STOP ;

Unlike FI-VNS, BI-VNS algorithm does not restart the neighborhood counter
after each improvement of xbsf . Therefore, in Alg. 2 we need an auxiliary variable
xmin keeping the current best solution to be used in updating xbsf when k reaches
kmax. Working load between successive BI-VNS iterations is more balanced than
in FI-VNS due to consistency in the number of explored neighbourhoods. To be
able to compare performance of FI-VNS and BI-VNS, we utilize dstep in Alg. 1
and Alg. 2 to count the number of discrete steps (i.e., the number of SH and LS
executions). The counter is controlled by MAX step which we appoint as the
stopping criterion.

Parameter analysis of VNS applied to MSPCD 7

Algorithm 3: Phases within the VNS iteration.

1 Function Init:
2 x = LPT(); /* list scheduling heuristic to generate initial solution */
3 x′ ← LS(x);
4 if (f(x′) < f(x)) then
5 x = x′;

6 return x ;

7 Function SH(x, N , k):

8 /* Generate feasible solution x′ from kth neighborhood of x */
9 for (i = 1; i <= k; i+ +) do

10 x′ ∈ N(x); /* at random */
11 x = x′

12 return x ;

13 Function LS(x′, N, FI, forward):
14 /* Apply a local search method on x′ depending on input parameters*/
15 repeat
16 Let N(x) = x1, ..., xp;
17 if (¬forward) then
18 Reverse(N(x));

19 i← 0;
20 x′ ← x;
21 repeat
22 i← i+ 1;
23 if (f(xi) < f(x)) then
24 x← xi ;
25 if FI then
26 Break;

27 until i = p;

28 until f(x′) ≤ f(x);
29 return x′;

There are several research goals of the parameter analysis we want to accom-
plish. We formulate them through the following research questions: (1) Which
VNS parameter is the most influential? (2) How each parameter individually in-
fluences the performance? (3) Are there interactions between VNS parameters?

4 Empirical study of the VNS parameters

Besides parameters related to the definition of VNS, each particular implemen-
tation can involve a problem-dependent set of parameters. These kind of param-
eters are for example solution quality measurement parameter (e.g., objective
function value, fitness or utility), number and types of used neighborhoods, or
improvement strategy. In order to obtain efficient algorithm, the one that pro-

8 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

vides high-quality solutions for the majority of tested instances, the appropriate
values of all parameters have to be identified. Finding the best possible combi-
nation of parameter values is usually an optimization problem itself, parameter
values represent decision variables, while the objective function is the same as in
the considered combinatorial optimization problem. Therefore, this part of the
metaheuristic design deserves special attention and it is a main subject of our
paper.

4.1 Previous study

The authors in [8] describe some of the steps required by the suggestions of
the experimental algorithmics [16]. For example, choice of the data structure
in which the solution is hold and the study of modular parts of the VNS algo-
rithm: (1) different types of neighborhoods (Swap-1, Swap-2, Swap-3 and IntCh);
(2) heuristics for initial solution generation; (3) task scheduling rule; (4) search
direction (forward-backward); (5) FI- and BI- improvement strategies. Tuning
of the VNS algorithm’s parameters (maximal number of neighborhoods, neigh-
borhood definitions, i.e. combinations and restrictions, stopping criterion) has
been conducted manually. Their results have shown that ES is the most effi-
cient scheduling rule when starting from feasible permutation based on critical
path distance. However, the authors have not provide concrete results. Results
in Tables 7 and 8 from [8] indicate high interaction between parameters, due to
”chaotic behavior of the scheduling process”.

Several VNS parameters which we categorize as numerical and categorical
variables have been recognized in [8]. The categorical variables are: shaking rules,
neighbourhood combinations, restricted neighbourhoods, the search direction
and the search strategy. The numerical parameters are kmax, kstep, pplateau,
while the influence of kmin was not considered as its value was always 1. The
experimental study was conducted gradually, where for each categorical variable
an independent study is performed with fixed configuration of other parameters.
In [8], maximal CPU time (tmax) is utilised as stopping criterion.

4.2 Current study

A stochastic nature of meta-heuristics requires executions of the algorithm sev-
eral times in order to correctly estimate the response value. A response value
commonly refers to the quality of a solution (sometimes referred to as usefulness
or utility), or the computational effort (e.g., running time, number of function
evaluations, number of iterations). A thorough review of different performance
measures is provided in [3, pg. 110] and in [2, pg. 40]. If the idea is to estimate an
effort to reach a solution of a predetermined quality, the performance measure
describes what is known as efficiency of the algorithm.

The differences between [8] and our study can be summarized as follows. Here
we consider only the CP+ES heuristic to generate initial solution and we utilize
only one type of the neighbourhood (Swap-1). On the other hand, we analyse two
VNS search strategies, FI-VNS and BI-VNS, we introduce new parameter kmin

Parameter analysis of VNS applied to MSPCD 9

and provide new strategies to assign values to kmin and kstep. Our experimental
setup is precised in Sec. 4.4.

4.3 Problem instances and performance estimator

We utilize the same set of problem instances as in [8], i.e., the random test
instances with known optimal solution. The set of 5 problem instances with
n = 50 and different values of precedence relation density ρ are utilized within
the preliminary study of stopping criterion (see Sec. 4.5). For the purpose of
parameter analysis, we restrict our study to one problem instance-ogra50 50.
We argue that in our case we should employ optimal value as the target solution
and base the performance on the successful runs [3]. In particular, the most often
employed measure, the average (median) objective function value, might not be
suitable for our analysis. The problem is that the two quite distant solutions may
produce an optimum with the same probability in the upcoming step. Thus, from
the view of the convergence properties of the VNS algorithm, we are less certain
about what defines the quality of the solution. We believe that in this situation
it is suitable to provide a target value and count the number of steps required
to find the solution which quality reaches that value. To obtain a statistically
meaningful representative of the algorithm’s execution, we repeat runs for 100
different seeds and count the occurrences of target solution (optimal in our case).
This is our performance estimator (optcount).

4.4 The parameters we want to investigate

We analyse the parameters of VNS listed in Table 1. There are several basic
VNS parameters i.e., kmax, kstep, kmin and pplateau. These parameters have
been recognized in the literature as an integral part of the VNS algorithms.
In addition, for this particular implementation, we consider several categori-
cal parameters that have important impact to the overall performance, such as
VNS-search-strategy, FI-LS and forward. Different values of VNS-search-strategy
produce two quite different algorithms as presented in Section 3.2, while changing
values for the other two parameters generates only new variants of the same algo-
rithm. The two categorical parameters within gray cells in Table 1, local search
(FI-LS) and neighborhood search direction (forward) are problem-specific (i.e.,
closely connected to MPSCD). In particular, we want to compare two type of
local search: LS using the first improvement search strategy (FI-LS=1) and the
best improvement local search (FI-LS=0). According to [8] FI-VNS with FI-LS=1

performs faster and better than FI-LS=0. However, when we appoint MAX step
as the stopping criterion the better performance is exhibited when FI-LS=0 for
both FI-VNS and BI-VNS algorithms. The categorical parameter forward is also
problem-specific, however it is reported in [8] that its influence is not significant.

Categorical parameter KMIN is introduced in order to denote different strate-
gies of calculating kmin. Namely, our goal is to compare the variants of VNS
that visit all neighborhoods in the SH step with the one that always skips the
same neighborhoods in the case when kstep > 1. The first strategy appoints

10 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

Table 1. VNS parameters.

VNS parameters

Numeric

kmax {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
kstep [1,

⌈
x
2

⌉
− 1] ∪ {kmax − 1}

pplateau {0, 0.1, 0.5, 0.9, 1}

Categorical

VNS-search-strategy
BI-VNS

FI-VNS

KMIN
kmin: kmin = 1

kminrand:
kmin = rand[1, kstep]

0
FI-LS

1

0
forward

1

kmin = 1, i.e., the search always starts from the smallest neighbourhood. We
denote this strategy as kmin. The second strategy is to change kmin as a func-
tion of kstep. When denoted as kminrand it specifies that kmin is chosen from
[1, kstep] uniformly at random.

In practice, the values of specific parameters are determined with regard
to the dimension of the problem and/or other problem related characteristics.
Here, we focus on the smaller values for kmax as provided in Table 1. The values
for kstep have been specified in the preliminary study as integers from interval
[1, dx2 e − 1]. For example if kmax = 4 than the possible values for kstep are
{1, 2, 3}, while for kmax = 10, kstep ∈ {1, 2, 3, 4, 9}.

4.5 Setting the stopping criterion value

In our preliminary study we try to answer a question if there exists such a value
for MAX step beyond which the average solution’s quality does not improve in
some practical sense. The goal is to observe changes of the the objective function
value and the runtime at different levels of stopping criterion of the correspond-
ing algorithm. In the first phase of the preliminary experiments we have set
MAX step to 500. This corresponds to about 60 seconds of CPU runtime for
problem instance ogra50 10. We generate convergence plots, i.e., the best objec-
tive function values for different dstep. The plots corresponding to the ogra50 50
instance are presented in Fig. 1. The goal is to find lower value of MAX step
that allows multiple and fair comparisons between different algorithm’s config-
urations.

From Fig. 1, with help of descriptive statistics we may conclude that for prob-
lem instance ogra50 50, MAX step = 200 is suitable to differentiate VNS pa-
rameter’s configurations. More precisely, to find the appropriate value for dstep
for which we can conduct meaningful empirical study of the VNS’s configuration,
we observe the curves in Fig. 1. The figure shows the propagation of the average,

Parameter analysis of VNS applied to MSPCD 11

600(20) 600(47) 600(64) 600(79) 600(86) 600(90) 600(93) 600(94) 600(94) 600(96)

600(16) 600(37) 600(54) 600(70) 600(76) 600(79) 600(85) 600(89) 600(94) 600(96)

600(14) 600(46) 600(71) 600(79) 600(87) 600(92) 600(93) 600(95) 600(95) 600(98)

600(18) 600(46) 600(65) 600(73) 600(80) 600(83) 600(86) 600(89) 600(91) 600(93)

vns_swap vns_swapBI

B
I−

LS
F

I−
LS

100 200 300 400 500 100 200 300 400 500

600

650

700

750

800

600

650

700

750

800

comp. steps

ob
je

ct
iv

e
fu

nc
tio

n

80% of results Maximum Mean Median Minimum

Convergence graphic for ogra50_50

Fig. 1. Convergence plots of four VNS algorithms for problem instance ogra50 50.

minimal and maximal solutions’ quality. We are able to detect the start of the
stagnation phase, i.e., the value for dstep for which the algorithm reaches stag-
nation. When we observe red doted line, that signifies mean objective function
value over 100 repetitions, suitable value for dstep seems to be 200. We prefer
to observe mean values (over median) due to the fact that mean value is more
sensitive to the span of objective function values.

4.6 Methodology

Our strategy may be divided into two stages: 1. variable impact, and 2. modeling.
The first stage of our study pertains to answer our first research question of the
most influential parameters. The modeling stage concerns choice of the right
model to fit our data. The goal is to better explain relationships between VNS
parameters and the optcount which then provide the best view on the nature of
their influence. It is the necessary step of the experimental study in order to
measure size of the effect of VNS parameters on the estimated performance [3].
We may start with presuming a linear model (which is often the practice) and
visualize the residuals of the model. This is a good practice to check assumptions
for the linear model which is linearity, normality and homoscedasticity of the
residuals. We utilize R software tools.

12 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

4.7 Results

We separate our results for the two VNS search strategies. Both studies start with
measuring importance of each considered VNS parameter by employing random
forest method and linear regression model on all parameters. The visualization
of the linear model via ggplot2 and flexplot packages reveal the existence of the
non-linear terms or interactions.

The variable importance results for FI-VNS are presented in Table 2. The

Table 2. Size of effect for FI-VNS parameters

rank VNS RF Semi-Partial Standardized p-value
parameter R2 β coefficient

1 kmax 174.4 0.332 0.57 < 10−16

2 forward 155.5 0.266 -0.52 < 10−16

3 FI-LS 28.5 0.056 -0.24 < 10−16

4 pplateau 16.5 0.017 0.13 < 10−16

5 kstep 4.2 0.0 0.01 0.44
6 KMIN 1.2 0.003 0.05 < 10−5

random forest was conducted via cforest and varImp functions (party 1.3-8) for
seed(1010). The results are reported under RF column. With multivariate lin-
ear lm function1 we calculate Semi-Partial R2. By applying lm.beta (package
lm.beta 1.5-1) on the result of lm, we determined standardized β coefficient.
The linear regression model of these 6 parameters has identified a significant
regression equation with the outcome F (6, 2473) = 851, p < 10−16, adjusted
R2 = 0.67. From Table 2 we can conclude that kstep does not show practical or
statistical significant effect on the performance. In principal, we could eliminate
it from the further modeling. KMIN shows statistical importance, but due to small
effect size it shows negligible practical significant influence on the estimated per-
formance. Thus, we may also remove it from the further modeling and examine
other possible relationships between the remaining parameters and the optcount.

After extracting the three parameters (kstep,pplateau,KMIN) the regression
model is defined with the following significant regression equation: optcount =
5kmax − 0.31k2max − 39.37forward+ 3.74kmax · forward− 6.5FI LS with the
outcome F (5, 1234) = 1124, p < 10−16, adjusted R2 = 0.82. The model shows
nonlinear relationship and interactions, specifically among kmax and forward

parameters. This means that for the optimal performance we need to take care
about the values of both parameters. On the other hand, influence of FI LS is
independent from others and based on the negative coefficient we know that
FI LS=0 produces optimal solutions more often than FI LS=1. With regard to
kmax we observe the concave relationship (due to negative coefficient) and an

1 lm() (package stats4 R version 4.0.4.

Parameter analysis of VNS applied to MSPCD 13

uphill slope with positive coefficient 4.67. This indicates that as kmax increases,
the optcount is higher, however, the performance will reach a stagnation point
after which it might degrade. The final linear model is visualized in Fig. 3.

Fig. 2. Regression model for FI-VNS and its corresponding main parameters.

The variable importance results for BI-VNS are presented in Table 3. The lin-
ear regression model of these 6 parameters has identified a significant regression
equation with the outcome F (6, 1233 = 649.9), p < 10−16, adjusted R2 = 0.76.
From the table we conclude that last three parameters may not be included

Table 3. Size of effect for FI-VNS parameters

rank VNS RF Semi-Partial Standardized p-value
parameter R2 β coefficient

1 forward 301.63 0.47 -0.69 < 10−16

2 kmax 189.75 0.24 0.51 < 10−16

3 FI-LS 41.55 0.05 -0.22 < 10−16

4 pplateau -0.37 0.0 -0.003 0.8
5 kstep 16.42 0.01 -0.06 < 10−5

6 KMIN 2.8 0.0 -0.003 0.8

in our regression model of the performance analysis. Therefore, we are able to
produce final significant regression model for BI-VNS defined in R as follows:
optcount = 4.67kmax−0.3k2max−47.71forward+3.9kmax·forward−6.84FI LS
with the outcome F (5, 1234) = 1698, p < 10−16, adjusted R2 = 0.87. The final
linear model is visualized in Fig. 3.

14 T. Jakšić-Krüger, T. Davidović, V. Jelisavčić

Discussion about individual parameters KMIN parameter has shown low
statistical impact on the overall performance. However, it is still recommended
to conduct graphical analysis due to the nature of the relationship between
kmin and kstep. We produce plots that we provide on the following web-page.
As shown, there are interactions between KMIN and kstep, which means that the
success of a KMIN strategy depends on the values of kstep and kmax consequently.
In addition, we observe the same for interactions between KMIN and kmax. Conse-
quently, for the optimal performance it is necessary to conduct tuning via some
software package like iRace, ParamILS, SPO etc [4].

Fig. 3. Regression model for BI-VNS and its corresponding main parameters.

5 Conclusion

In this paper we apply the multivariate regression model and random forests to
experimental analysis of parameters used in permutation-based VNS designed to
schedule communicating tasks to multiprocessor systems of arbitrary topology.
Our goal is to promote the application of automated experimental evaluation
in order to conduct objective performance analysis of stochastic algorithms. We
are able to identify the most influential and nonlinear relationships between the
algorithm’s parameters. As the future work we plan to extend the list of values for
some of the parameters and apply the presented methodology to larger problem
instances.

References

1. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart Jr., W.R.: De-
signing and reporting on computational experiments with heuristic methods. J.
Heuristics 1(1), 9–32 (1995)

Parameter analysis of VNS applied to MSPCD 15

2. Barrero, D.F.: Reliability of performance measures in tree-based Genetic Program-
ming: A study on Kozas computational effort. Ph.D. thesis, University of Alcalá
(2011)

3. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation; The
New Experimentalism. Natural Computing Series, Springer (2006)

4. Bartz-Beielstein, T., Doerr, C., Bossek, J., Chandrasekaran, S., Eftimov, T., Fis-
chbach, A., Kerschke, P., López-Ibánez, M., Malan, K.M., Moore, J.H., et al.:
Benchmarking in optimization: Best practice and open issues (2020), arXiv, cs.NE,
2007.03488

5. Beiranvand, V., Hare, W., Lucet, Y.: Best practices for comparing optimization
algorithms. Optim. Eng. 18(4), 815–848 (2017)

6. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory
analysis of genetic algorithms. Evol. Comput, IEEE Transactions on 8(4), 405–421
(2004)

7. Davidović, T., Crainic, T.G.: Benchmark-problem instances for static scheduling of
task graphs with communication delays on homogeneous multiprocessor systems.
Comput. Oper. Res. 33(8), 2155–2177 (2006)

8. Davidović, T., Hansen, P., Mladenović, N.: Permutation-based genetic, tabu, and
variable neighborhood search heuristics for multiprocessor scheduling with com-
munication delays. Asia-Pac. J. Oper. 22(03), 297–326 (2005)

9. Davidović, T., Liberti, L., Maculan, N., Mladenović, N.: Towards the optimal so-
lution of the multiprocessor sheduling problem with communication delays. In:
Proceedings of the 3rd Multidisciplinary International Conference on Scheduling :
Theory and Applications (MISTA 2007). pp. 128–135. Paris, France (2007)

10. Davidović, T., Liberti, L., Maculan, N., Mladenović, N.: Towards the optimal so-
lution of the multiprocessor sheduling problem with communication delays. In:
Proceedings of the 3rd Multidisciplinary International Conference on Scheduling :
Theory and Applications (MISTA 2007). pp. 128–135. Paris, France (2007)

11. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm Evol. Comput 1(1), 19–31 (2011)

12. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Springer, 2nd
edn. (2009)

13. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO Journal on Computational Optimization 5(3),
423–454 (2017)

14. Hooker, J.N.: Needed: An empirical science of algorithms. Oper. Res. 42(2), 201–
212 (1994)

15. Kendall, G., Bai, R., B lazewicz, J., De Causmaecker, P., Gendreau, M., John,
R., Li, J., McCollum, B., Pesch, E., Qu, R., et al.: Good laboratory practice for
optimization research. Journal of OR Society 67(4), 676–689 (2016)

16. McGeoch, C.C.: A guide to experimental algorithmics. Cambridge University Press
(2012)

17. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput Oper Res
24(11), 1097–1100 (1997)

18. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Courier Dover Publication, New York (1998)

19. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74. John Wiley &
Sons (2009)

