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Abstract. Intensive applications and success of metaheuristics in prac-
tice have initiated research on their theoretical analysis. Due to the
unknown quality of reported solution(s) and the inherently stochastic
nature of metaheuristics, the theoretical analysis of their asymptotic
convergence towards a global optimum is mainly conducted by means
of probability theory. In this paper, we show that principles developed
for the theoretical analysis of Bee Colony Optimization metaheuristic
hold for swarm intelligence based metaheuristics: they need to implement
learning mechanisms in order to properly adapt the probability rule for
modification of a candidate solution. We propose selection schemes that
a swarm intelligence based metaheuristic needs to incorporate in order
to assure the so-called model convergence.
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1 Introduction

Let us consider an optimization problem that requires minimization of a real-
valued function f on a feasible space X . More precisely, f : S → R with a domain
S ⊆ R

n. S is also called a set of solutions (or solution space) for the consid-
ered optimization problem, while each x ∈ S represents a solution. A solution
x = (x1, x2, . . . , xn) is an array in the n-dimensional space and it consists of
components xi, i = 1, . . . , n. X ⊆ S is called a set of feasible solutions and it
contains only the solutions that satisfy constraints defined within the considered
optimization problem, i.e., x ∈ X represents a feasible solution. An optimal solu-
tion (or optimum) of the considered optimization problem is x∗ ∈ X such that
f(x∗) ≤ f(x) for all x ∈ X . All other solutions x ∈ X are called sub-optimal. The
optimal solution may not exist and then the considered optimization problem
is unfeasible. If the optimal solution exists it may not be unique, and therefore,
the solving of the considered optimization problem means finding one or more
(or sometimes even all) of its optimal solutions.

Finding the optimal solutions is usually a very hard task and it involves the
application of exact methods that are time and/or space consuming. The effi-
cient, problem-specific methods designed to find sub-optimal solutions very fast
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are called heuristics. Metaheuristic methods have been developed to eliminate
limitations of exact and heuristic methods, i.e., to satisfy requirements for less
computational resources and to obtain a better quality of sub-optimal solutions
at the same time. Today we distinguish various types of metaheuristics [25]. The
population-based methods explore the idea that combining or modifying exist-
ing solutions can produce new and (hopefully) better ones. Swarm Intelligence
(SI), especially its engineering stream, is a discipline of Artificial Intelligence
(AI) that studies actions of individuals in various decentralized systems [1]. It
explores the behavior of natural entities (consisting of many individuals) in order
to build artificial systems for solving problems of practical relevance [4]. There-
fore, among population-based we distinguish SI-based metaheuristics such as
Ant Colony Optimization (ACO) [6], Artificial Bee Colony (ABC) [18], Bee
Colony Optimization (BCO) [3], and Particle Swarm Optimization (PSO) [26].
An exhaustive list of SI-based metaheuristics methods may be found in [21].

Although practically very useful, metaheuristic algorithms suffer from a the-
oretical disadvantage: it is hard to evaluate the quality of the reported solution.
The obtained solution may be even optimal, however, it is almost impossible to
prove that. In the literature, metaheuristics are primarily investigated experi-
mentally, usually associated with their concrete engagement and implementa-
tions. In addition, some theoretical research related to the convergence analysis
of metaheuristic methods has already been conducted [2,10,20,22,28].

The importance of metaheuristics’ theoretical background has inspired our
work on proving convergence properties of the SI-based metaheuristic methods.
The difficulty of theoretical analysis of stochastic search methods, in general,
may be found in complex, highly nonlinear and stochastic correlations between
their constituting parts [28]. Furthermore, theoretical analysis of metaheuris-
tics commonly implies mathematical verification of the asymptotic convergence
of the reported solution towards an optimal one, under some predefined condi-
tions. Assuming that a considered optimization problem is solvable, investigating
convergence properties of a metaheuristic algorithm is related to the question:
is the optimal solution reachable if the algorithm is given enough time and
resources [5]. Inspired by [10,12], two types of convergence for BCO, the so-
called best-so-far convergence and sophisticated model convergence, have been
utilized in [15,16]. Therefore, our intention now is to apply the gained insights
to all SI-based metaheuristics. The main contributions of this paper are fourfold.
First, we systematically review the existing notations and definitions related to
the model convergence of metaheuristic methods. Then we provide an extension
of the generic procedure (proposed in [10]) in such a way that it reflects the
main steps of SI metaheuristic methods. Third, we recommend learning rules
that assure model convergence of SI methods. Finally, we provide a systematic
proof of model convergence of SI methods towards a global optimum when the
recommended learning rules are applied.

In Sect. 2 we review some of the known results related to the SI methods
and their convergence analysis. After a short survey of general notation and
properties of stochastic sequences in Sect. 3, in Sect. 4 we present conditions
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that are sufficient to obtain convergence of SI-based metaheuristics to desired
optimal solution. The last section contains concluding remarks.

2 Swarm Intelligence Metaheuristic Methods

From the biological perspective, swarm behavior (such as fish schools, flocks of
birds, herds of land animals, insects’ communities, etc.) is founded on existential
needs of individuals to collaborate without any central control. In such a way
they increase the probability to survive because predators mostly attack isolated
individuals. This type of behavior is first and foremost characterized by auton-
omy, distributed functioning and self-organization. With this main idea in mind,
SI investigates cooperation of individuals in biological systems and implements
them to solve various practical problems [1].

Typical examples of SI metaheuristic algorithms are: ACO, PSO and var-
ious bees algorithms. Practicality and usefulness of these algorithms verified
experimentally have motivated their theoretical research. Related to PSO, the-
oretical verification of convergence may be found in [7,17,26,27,29], for ACO
in [8,9,12,19,24,30] and for BCO in [15,16]. In the above mentioned papers
conditions of convergence are given for the specific method or a specific imple-
mentation of the corresponding SI metaheuristic methods. In the case of BCO,
the authors of [15,16] have presented sufficient conditions for convergence of
a constructive version of the BCO algorithm (BCOc). Theoretical analysis of
the improvement-based version of the BCO algorithm (BCOi) is given in [14].
Therefore, our goal is to recognize conditions of asymptotic convergence under
a general framework that describes all known SI metaheuristics w.r.t. to both
types of generating solutions (constructive and the improvement one).

Constructive SI methods are building solutions by adding components to an
empty solution or to already generated partial solutions. The examples of con-
structive methods are ACO and early versions of BCO, called BCOc. On the
contrary, the improvement-based ones are modifying the existing complete solu-
tions in an attempt to improve their quality. Typical examples of improvement-
based SI methods are PSO, and BCOi, while ABC represents combination of
these two approaches.

2.1 Instance- and Model-Based Algorithms

In [30] the authors proposed a framework that should improve the performance
of majority of metaheuristic methods from a theoretical aspect. This framework
is based on analyzing parameters of a metaheuristic method. Borrowing the
notation from the machine learning field, the authors of [30] recognize two types
of metaheuristic methods: instance-based and model-based. To generate new can-
didate solutions an instance-based algorithm utilizes only a current solution or a
set of current solutions. On the contrary, model-based algorithms utilize a param-
eterized probabilistic scheme (called model) to generate candidate solutions.
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A metaheuristic method is said to satisfy the model-based search properties
if it iteratively explores the following two steps [30]:

– Generates (constructs or transforms) candidate solutions using some param-
eterized probabilistic model.

– Modifies the model (i.e., instantiate update rule) using candidate solutions
such that the search is directed towards more promising regions.

Such a metaheuristic adopts the model-based parameter scheme, thus establish-
ing a basis for the model convergence [10]. It requires learning properties which
may be implemented in a form of an update rule for the method’s parameters
and/or structure [30,31]. The update rule represents the utilization of informa-
tion extracted during the search in order to update the model.

2.2 Generic Procedure

The authors of [10,11,30] have presented a general framework called generic algo-
rithm (i.e., generic procedure) to encompass most (or all) known metaheuristics
for combinatorial optimization problems. The generic procedure allows a rather
flexible description of different segments (modules) of a metaheuristic. It can
be viewed as an iterative algorithm that utilizes two different structures: (1)
mt - a state of memory, and (2) Lt - a list of N sample points, i.e., solutions
(xs ∈ X , 1 ≤ s ≤ N,N ∈ N) in iteration t. The stopping criterion is defined as
the maximum number of iterations. The main steps of the generic procedure are
as follows:

1. t ← 1;
2. Initialization of memory mt;
3. Until stopping criterion is satisfied:

(a) Determine the list Lt as a function g(mt, ξt) of memory state mt and a
random influence ξt;

(b) Determine a value of objective function f(xs) for all xs ∈ Lt and generate
a list L+

t of pairs (xs, f(xs));
(c) Determine new memory state mt+1 as a function h(mt, L

+
t , ξ′

t) of current
memory state mt, current list L+

t and random influence ξ′
t;

(d) t ← t + 1.

The state of memory mt may be further defined by two components: the so-called
sample-generating part (ms

t ) and the reporting part (mr
t ). The sample-generating

part holds all necessary information to generate Lt in iteration t. All other
relevant information are stored in mr

t , such as solution of the highest quality
found so far, namely the best-so-far solution, xbsf . The procedure to determine
xbsf depends on the best solution found in iteration t, i.e., on the iteration best
solution (x̂t). The solution x̂t is determined as f(x̂t) = min1≤s≤N f(xs). We
should emphasize that for the purpose of convergence analysis xbsf represents a
current approximation of an optimal solution [10]. Function g(mt, ξt) determines
a probability distribution of new solutions to enter the list Lt, while function
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h(mt, L
+
t , ξ′

t) defines rules to determine the state of memory mt+1 in the next
iteration. Moreover, g(mt, ξt) refers to a set of possible transformations (i.e.,
possible moves) that generate new solutions depending on the current model.
Function h(mt, L

+
t , ξ′

t) is responsible for modifying (updating) the model by
integrating learning properties ([10], p. 168). It is important to note that in this
formalism, information about a problem instance may be used as an argument
of functions g and h. Consequently, the update rules differentiate w.r.t. the type
of optimization problem being solved and the type of heuristic rules that either
construct or modify solutions during the search. The provided generic procedure
accommodates well all notable SI metaheuristic algorithms as it was shown for
some versions of ACO, PSO [10] and BCO [14].

Here, we present a modification of generic procedure that contains more
details about the steps of typical SI method. Finding a solution of an opti-
mization problem requires all of its components to be determined. Constructive
methods are selecting values for components and building a solution step by step,
while the improvement-based metaheuristics are transforming the current values
of solution components in order to improve the quality of the considered solution.
The SI methods that satisfy model-based search properties involve some learning
steps that influence the solution generation process. More precisely, the determi-
nation of solution components values is influenced by the quality of previously
generated solutions. The main focus of learning is the modification of selection
scheme for values of components (expressed by selection probability values pi,j).
As we are considering the combinatorial optimization problems, the set of pos-
sible components values is finite (or at most countable). Consequently, selection
probability pi,j measures the chances that component i will take value j. If the
SI method is model-based the values for selection probabilities will change from
iteration to iteration, i.e., we will have different values for pi,j(t), t = 1, 2, . . .

SI metaheuristics are population-based methods, and therefore their mt con-
sists of N current solutions, best-so-far solution, current selection probability
values, and some other data specific for each particular method (we do not go
into details here and consider only the first three items). The pseudo-code of
model-based SI metaheuristic method is presented by the Algorithm 1.

Each SI metaheuristic method has its specificities, however, they can be
described by some general steps. At the beginning, the reading of problem
data and setting of parameter values is performed. Then, some initialization
is required, and we described it in the following way: best-so-far solution (the
final solution to be reported to the user at the end of execution) is initialized
to an empty solution and the corresponding objective function value is set to a
large enough constant. These steps are not necessary yet they ensure the com-
pactness of our pseudo-code. The values for selection probabilities pi,j(1) are
set to given initial values, denoted by pi,j(0), ν(i) denotes the number of pos-
sible values for the component i. The values pi,j(0) may be different in various
SI methods, although usually all selection probabilities have the same initial
value. Some of the methods involve restarts in their executions and then the
values of pi,j(t) are set to pi,j(0) again. We also assume that the initial state of
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t ← 1
Read(Problem input data, method parameters)
xbsf ← ∅, f(xbsf ) ← ∞ {initialization of mt}
for i ← 1, n do

for j ← 1, ν(i) do
pi,j(t) ← pi,j(0)

end for
end for
{main loop}
repeat

for s ← 1, N do
xs ← CreateSolution(mt, pi,j(t), rand)
if f(xs) < f(xbsf ) then

xbsf ← xs

end if
end for
for i ← 1, n do

for j ← 1, ν(i) do
pi,j(t + 1) ← Update(pi,j(t))

end for
end for
t ← t + 1

until stopping criterion is satisfied
Return(xbsf , f(xbsf ))

Algorithm 1: Pseudo-code for SI method

mt (actually the content of m1) does not include any solution from the pop-
ulation. This enables to capture the characteristics of both constructive and
improvement-based methods. As our REPEAT loop is executed for t = 1 first,
each particular method can generate initial population according to its own set
of rules (realized by procedure CreateSolution). The same (or similar) pro-
cedure can be used in all remaining iterations to generate the new population of
solutions by the considered SI method and possibly update xbsf . The final step
of each iteration consists of updating values for selection probabilities to be used
in the next iteration.

3 Convergence Analysis

Convergence of a stochastic sequence addresses the question whether or not
a series of random variables (X1,X2, . . .) converges to a new random vari-
able X∗. In case of metaheuristic algorithms we observe a sequence of solu-
tions produced at the end of each iteration. Having in mind that SI meta-
heuristics are population-based methods, we need to determine a single solution
xt = (x1

t , x
2
t , . . . , x

n
t ) ∈ X that is reported at the end of iteration t. Here, xi

t ∈ R

represents the i-th component of the solution xt. Usually, xt = x̂t.
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Because the algorithm incorporates a global knowledge exchange among the
iterations, we are able to obtain best-so-far solution xbsf

t in any iteration t.
Here, we use a strict policy for the update of xbsf

t . Namely, in the initialization
phase of the search the value of variable xbsf is set arbitrary until the condition
f(x̂t) < f(xbsf ) is satisfied and then xbsf copies a value from x̂t. Consequently,
we become interested in the sequence of solutions xbsf

t generated by the meta-
heuristic method, i.e., we observe the sequence (xbsf

1 ,xbsf
2 , . . . ,xbsf

t , . . .).
The best-so-far convergence analyzes conditions under which the sequence

(xbsf
t )∞

t=1 converges to an optimal solution x∗, more precisely, it evaluates prob-
ability that an optimal solution will be found at least once during the search.
Accordingly, one should find the conditions that guarantee a sequence of objec-
tive function values f(xbsf

t ) to converge (“w. pr. 1” or “in probability”) to
f∗ = min{f(x) : x ∈ X}. As shown in [10,23,24] the only requirement is that, in
any iteration, (p∗) – the probability to find an optimal solution is strictly greater
than zero. However, the concept of best-so-far convergence is too “generous” as
it appears that even a random search, known as quite inefficient algorithm, con-
verges to a global optimum [23]. A superior behavior may be expected only in
the cases when the set of current solutions (also referred to as model) tends to be
modified into the set of optimal and high quality solutions, as t → ∞. This type
of modification is named the model convergence [10] and it tends to evaluate the
probability that the algorithm reaches a state in which it generates only optimal
solution(s). Model convergence is hard to prove as it requires adequate balance
between exploration and exploitation of the search obtained by fine-tuning of
the algorithm’s parameters.

4 Model Convergence of SI Optimization Methods

In this section we present conditions that are sufficient for any SI based meta-
heuristic algorithm to find an optimal solution. We start with necessary notation
and remind on known theoretical results in the literature. The basic tools of
probability theory are utilized, such as limit theorems for stochastic sequences,
in particular the second Borel-Cantelli lemma which we do not repeat here.

To express the model-based search properties, the SI method needs to be
well organized (structured) algorithm which utilizes the information about the
performance from the previous stages of its execution. Consequently, the global
knowledge exchange between iterations is the main assumption in our analysis.
These requirements are fulfilled if CreateSolution procedure of the SI generic
pseudo-code (Algorithm 1) includes some learning properties.

4.1 Preliminary Conditions

To explain the course of our analysis, the following events should be defined
(borrowing the notation from [10,13]).

Definition 1. For any feasible solution x of the considered problem and an
iteration counter t ≥ 1 assume that:
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– C(t) denotes the event that xt = x, i.e., the examined solution was generated
in iteration t. Cc(t) is used to represent the complementary event.

– B(t) marks the event that x was not visited during the first t iterations i.e.,
B(t) = Cc(1) ∩ Cc(2) ∩ · · · ∩ Cc(t). The complementary event is Bc(t).

– B =
⋂∞

t=1 B(t) represents the event that the algorithm cannot generate the
examined solution x, i.e., x 
= xt for all t = 1, 2, . . .

– r(t) = Pr(Bc(t)|B(t − 1)) = Pr(C(t)|B(t − 1)) means the probability that x
is generated in the iteration t, although it has not been obtained in any of the
previous iterations. ♦

According to Definition 1, B(1) denotes that x was not produced by the
algorithm in the first iteration, B(2) describes the situation that x was not
visited in the first and second iteration, and so on. Consequently, {B(t)}∞

t=1

represents a non-increasing sequence of events1, more precisely:

B(1) ⊇ B(2) ⊇ · · · ⊇ B(t) ⊇ B(t + 1) ⊇ · · · .

Based on Definition 1 and definition of convergence in probability from [10,
14,16], Pr(C(t)) → 1 as t → ∞ denotes that the sequence xt converges in
probability to the set X ∗ (that contains only optimal solutions). Moreover, based
on the definition of events B and B(t) we can conclude that

Pr(B(t)) → P (B) = Pr

({
+∞⋂

t=1

B(t)

})

as t → +∞.

To establish connection between events introduced in Definition 1 we present
here the theorem about the convergence of Generalized Hill Climbing algorithm
(GHC) proven in [13]. The pseudo-code for GHC is presented by the Algorithm 2
in Appendix.

Theorem 1. A GHC algorithm converges in probability to X ∗ if and only if the
following two conditions are satisfied:

(i)
+∞∑

t=1

r(t) = +∞,

(ii) Pr({Cc(t)|Bc(t − 1)}) → 0 as t → ∞.

Then, an equivalent form for (i) can be shown, i.e.,

Lemma 1. Pr(B) = 0 ⇔
+∞∑

t=1

r(t) = +∞.

Lemma 1 was obtained for the single-solution metaheuristic, however, it is
straight-forward to extend it to the population-based methods by observing the
sequence of best-so-far solutions.
1 In [10] the author mistakenly reported that the sequence {B(t)}∞

t=1 is non-decreasing.
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In order to identify the model convergence properties for majority of the SI
metaheuristic methods, we need to define four modification schemes for the val-
ues of selection probabilities. Based on our previous experience, besides construc-
tive and improvement-based SI metaheuristics we need to distinguish between
two types of optimization problems. The first type includes optimization prob-
lems for which the size of the solution is smaller then the size of the problem.
More precisely, these are the so called selection problems (like p-median or p-
center location problems). In these kind of problems we are usually given a
number of possibilities to choose a subset of their values that will constitute a
solution of the considered problem. In this case, modification scheme for selec-
tion probability values needs to consider only components’ affiliation within xbsf .
The second type of optimization problems are the ones whose solutions represent
orderings and/or groupings of all given elements. For these problems the length
of the solution vector is equal to the size of the problem. Typical examples of the
second type problems are Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP) and various scheduling problems. For these problems the prob-
ability update rules should be modified in such a way to take care of ordering or
group affiliation of solution components.

4.2 Modification Schemes in the Cases When Subset of Data
Constitutes a Solution

For the constructive SI method the selection probability for component i taking
value j in the iteration t + 1 should be modified in the following way:

pi,j(t + 1) =

⎧
⎪⎨

⎪⎩

1−λt · (1−pi,j(t)) if j ∈ xbsf ;
λt · pi,j(t) if j /∈ xbsf ;
pi,j(0) if j was not chosen before.

(1)

where 0 < λt ≤ 1 represents the time dependent learning rate. As we already
mentioned, pi,j(0) represents the initial value for selection probability. The idea
is to learn the influence of the component’s value to the quality of generated
solutions. This means that if value j belongs to the best-so-far solution, the
probability that j will be included as a value for component i of some solution
constructed in the next iteration increases. If the value j is not in the best-
so-far solution but was selected before (in some of the previous iterations) the
probability of its selection in the next iteration decreases. For all values that
were not considered in any of previous iterations the selection probability value
remains unchanged (its value is still equal to the initial one).

In addition, we define the probability of generating an optimal solution for
this type of problems by the constructive SI method as the following indicator
function of the pair (i, j):

p∗
i,j =

{
1 if j ∈ x∗;
0 otherwise.
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In the case of the improvement-based metaheuristic method the selection
probability that component i should take value j in the iteration t + 1 should
be modified as follows (assuming 0 < λt ≤ 1):

pi,j(t + 1) =

{
1−λt · (1−pi,j(t)) if j ∈ xbsf and i /∈ xbsf ;
λt · pi,j(t) otherwise;

(2)

where i /∈ xbsf is an abbreviation for xi
s /∈ xbsf and it actually refers to the

previous value of the component i in any solution xs considered for transforma-
tion. If value j was a part of the best-so-far solution and the current value of
component i was not, the probability that j will substitute the current value of
component i in the next iteration is increased. In all other cases we decrease the
probability of selecting value j in the next iteration.

The corresponding indicator function is defined in the following way:

p∗
i,j =

{
1 if i /∈ x∗, j ∈ x∗;
0 otherwise.

4.3 Modification Schemes in the Cases When All Data Constitute a
Solution

First, we consider the problems (such as TSP) requiring to properly order solu-
tion’s components. The selection probability modification schemes in the case of
constructive and improvement-based SI methods have the same form:

pi,j(t + 1) =
{

1−λt · (1−pi,j(t)) if (i, j) ∈ xbsf ;
λt · pi,j(t) otherwise; (3)

where 0 < λt ≤ 1. Here, we calculate the probability that component i should
be assigned value j either by adding value in a constructive method or by
transforming its previous value in an improvement-based method. The nota-
tion (i, j) ∈ xbsf describes the case that components i − 1 and i are getting
the same combination of values as in the best-so-far solution. The corresponding
indicator function can be defined as follows:

p∗
(i,j) =

{
1 if (i, j) ∈ x∗;
0 otherwise.

The same rule is applied to the VRP type problems, while for scheduling like
problems pair (i, j) denotes that the task i should be allocated to the group j.
Consequently, the modification (selection) scheme (3) is applicable in this case
as well.

4.4 Sufficient Conditions for Model Convergence of SI Methods

Let us assume that the considered SI algorithm is applying one of previously
defined schemes for modifying selection probabilities. In this section we provide
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the sufficient conditions for convergence in probability of the SI obtained solution
toward an optimal one. In order to assure model convergence of the SI algorithm,
two conditions should be satisfied: (i) all feasible solutions need to be reachable
from any initial solution and (ii) upon an optimal solution is found its generation
has to be favored.

The first condition represents the best-so-far convergence and it is satisfied
if, with probability one, there exists an iteration t > t0 in which any considered
solution x (optimal included) is found. This is consistent with the condition (i)
from the Theorem 1, i.e., the probability that an optimal solution will never be
generated tends to zero when t → ∞. The second condition is related to model
convergence. It requires to prove that, after generating an optimal solution, by
applying the corresponding update rule defined by one of the Eqs. (1), (2) or
(3), the generation of optimal solutions will be supported for the considered SI
algorithm. This actually means that pi,j(t) converges to p∗

i,j .

Theorem 2. The conditions

1 ≥ λt ≥ log t

log(t + 1)
for all t ≥ t0, (t0 ≥ 2), (4)

and
+∞∑

t=1

(1 − λt) = +∞, (5)

are sufficient for the corresponding SI method to converge in probability toward
an optimal solution x∗ from X ∗.

Proof: (i) (best-so-far convergence) We actually prove that Pr(B) = 0, i.e., the
equivalent condition from Lemma 1. Let x be a given feasible solution. Then
C(t) means that x is found for the first time in iteration t. As

B = Cc(1) ∩ Cc(2) ∩ · · · ⇒ x is never found

then it holds

Pr(B) = Pr({Cc(1) ∩ Cc(2) ∩ · · · }) ≤ Pr({x is never found})

=
+∞∏

t=1

Pr({x is not found in iteration t|x is not found in iteration k < t}).

(6)
If we refer to solution components and selection probability update rules

(1), (2) and (3), in the worst case for all pairs of components (i, j) not being
established in iterations 1, . . . , t, it holds:

pi,j(t) =

[
t−1∏

k=1

λk

]

· pi,j(0),
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(justifiable easily by induction). Applying the first condition of the Theorem 2,
it holds

[
t−1∏

k=1

λk

]

· pi,j(0) ≥
[
t0−1∏

k=1

λk

]

·
⎡

⎣
t−1∏

j=t0

log j

log(j + 1)

⎤

⎦ · pi,j(0)

=

[
t0−1∏

k=1

λk

]

· log t0
log t

· pi,j(0) =
const
log t

.

In such a way, for any pair of components (i, j), we obtained a lower bound of
the worst case selection scenario. Consecutively, even in the worst case, for the
probability to find the solution x by the considered SI method it holds:

∏

(i,j)∈x

pi,j(t) ≥
(

const

log t

)n

,

n being the number of components in the solution x.
Assuming that the solution x was not found by the SI method, an upper bound
on the right hand side of the relation (6) is obtained:

+∞∏

t=t0

[

1 −
(

const

log t

)n]

.

Applying logarithm and the convexity of the exponential function indicated by
(1−a)≤e−a,∀a ∈ (0, 1) (i.e., log(1−a)≤−a), from the previous term we obtain:

+∞∑

t=t0

log
(

1 −
(

const

log t

)n)

≤ −
+∞∑

t=t0

(
const

log t

)n

= −∞.

Now we deduce that

+∞∏

t=t0

[

1 −
(

const

log t

)n]

= 0,

i.e., Pr(B) ≤ 0 in (6). As Pr(B) ≥ 0 always holds, it is obvious that Pr(B) = 0.

(ii) (Model convergence) Let us assume that x∗ is generated in the iteration
m for the first time. Then xbsf

t = x∗ for all t ≥ m. Moreover, we can prove that
in all iterations t > m the selection probability for pairs (i, j), not included in
x∗, decreases, i.e., converges to zero as t → ∞.

Let (i, j) /∈ x∗. According to (1), (2) and (3), the selection probability of pair
(i, j) in iteration m + r, r = 1, 2, ... will be modified as follows:

pi,j(m + r) =

[
m+r∏

k=m+1

λk

]

· pi,j(m).
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The previous claim can be verified easily by induction. In addition, the condition
(5) gives us

+∞∑

t=1

(1 − λt) = +∞, which is equivalent to,
+∞∏

k=1

λk = 0.

Consequently, for the probability that (i, j) /∈ x∗ will be used again after the
optimal solution x∗ was generated, it holds:

lim
t→+∞ pi,j(t) = lim

t→+∞

[
t−1∏

k=m+1

λk

]

· pi,j(m) = 0.

That is exactly what needed to be proved for model convergence part of the
theorem. �

5 Conclusion and Future Work

We provide the sufficient conditions for the model convergence of the SI-based
metaheuristics: (1) all feasible solutions must be reachable from any point in the
solution space; (2) once an optimal solution is found, its generation is favored.
To fulfill these requirements, the SI algorithm needs to incorporate selection
schemes that exploit the knowledge from the previous search. We have pro-
vided three modification schemes w.r.t. the characteristics of the SI method and
the considered optimization problem. Although the established conditions guar-
antee the asymptotic convergence of the SI generated solution toward one of
the optimal ones, the question of practical usability of this result still remains
open. Namely, in practice we cannot perform an infinite number of iterations,
and therefore, we need also the evaluation of convergence speed. Consequently,
future work should include runtime analysis of an expected time (iteration index)
to obtain the optimal solution, the so-called first hitting time.
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Appendix

To describe the GHC algorithm, we remind on several definitions as provided
in [13]. An objective function f : S → [0,+∞) is defined on a finite set S of
all possible solutions. Two important components of GHC are: (a) neighborhood
function η : S → 2S , where η(x) ⊆ S, for all x ∈ S, and (b) hill climbing random
variables Rk : S ×S → R, where k = 1, 2, ... indicates an iteration counter of the
outer loop controlled by STOP OUTER. The pseudo-code for GHC algorithm is
given as Algorithm 2. At each iteration i of GHC’s inner loop, a candidate solu-
tion x is generated uniformly at random among all neighbours of the solution
xi ∈ S i.e., according to probability mass (density) function hxi

(x) = 1/|η(x)|.
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The hill climbing random variables Rk are utilized to accept or reject neigh-
bour solution. STOP INNER is the stopping criterion for inner loop utilized to
inspect if a current solution is a local optimum and if the counter k should be
incremented. According to [13], it is important to assume that the verification
if the current solution is a local optimum can be conducted in polynomial time.
This is possible if there are a polynomial number of neighboring solutions of the
current solution. As a consequence, the generation of a local optimum implies
that a new random variable will be used within the next iteration.

Define function η and a set of random variables Rk;
k ← 1; /* initialize outer loop counter */
i ← 0; /* initialize inner loop counter */
Select an initial solution x0 ∈ S;
while not STOP OUTER do

while not STOP INNER do
Generate x ∈ η(xi) according to hxi(x);
Δ(xi,x) = f(x) − f(xi);
if Rk ≥ Δ(xi,x) then

Accept solution x;
else

Reject solution x;
end if
i ← i + 1;

end while
k ← k + 1;
Update R k;

end while

Algorithm 2: Pseudo-code of the GHC algorithm.

It is important to note that the search space S must be reachable, that is, all
solutions are accessible regardless of a starting point x0 [13].
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