[image: image4.jpg]\oymopis200

XXXVIl Symposium on Operational Research

[image: image3.jpg]\SYM-OP-IS 20 M

& 36th Symposium on Operational R

Mathemtica Insttute SANU - Belgrads.

Parallel Bee Colony Optimization for Scheduling

Independent Tasks to Identical Machines
tatjana davidović, dušan ramljak
Mathematical Institute, SASA, Belgrade, tanjad@mi.sanu.ac.rs, dusan@ramljak.rs
Milica šelmić, dušan teodorović
Faculty of Transport and Traffic Engineering, Belgrade, {m.selmic,dusan}@sf.bg.ac.rs
Abstract: In this paper we propose two synchronous parallelization strategies for Bee Colony Optimization (BCO) to be applied on the problem of static scheduling independent tasks on identical machines. The BCO algorithm is meta-heuristic that belongs to the class of biologically inspired stochastic swarm optimization methods. Our parallel BCO algorithms are tested on distributed memory multiprocessor architecture under MPI communication library. Presented experimental results show that our parallel BCO algorithm provides almost linear speedup and preserves solution quality in the case of coarse-grained parallelization strategy. On the other hand, fine-grained strategy is not suitable for this kind of target multiprocessor architecture.
Keywords: Parallelization Strategy, Meta-heuristics, Bee Colony Optimization (BCO), Scheduling Problems.
1. introduction
Meta-heuristic methods are widely used tools in solving various combinatorial optimization problems. In most of the cases they provide solutions of high quality within reasonable CPU time. However, sometimes when problem size increases, the execution time required by meta-heuristic to solve it may prolong too much. Parallelization has proven itself as the efficient way to overcome this problem.
Recently proposed Bee Colony Optimization (BCO) algorithm [1,2,3] is inspired by the foraging habits of bees in the nature. As of the author’s knowledge, no works has been reported on parallelization strategies of BCO. On the other hand, the method itself seems to have significant amount of inherent parallelism. Therefore, the main goal of this work is to study the potential strategies for the parallelization of BCO.

The sequential implementation of BCO for scheduling independent tasks to identical machines is proposed in [4]. This implementation represents excellent starting point for developing parallelization strategies of BCO method due to the simplicity of treated problem. Therefore, we use it as a pattern in spite of the fact that sequential version performed well. We propose two synchronous parallelization strategies of BCO on distributed memory IBM HPC Linux Cluster Server+16 times 2 Dual Core Intel Processors on 2.33GHz/ 1333MHz with 4MB RAM, Ethernet 3rd Party e1350 SMC 8848M Switch Bundle. Our implementations are in C programming languages using MPI communication library.

The rest of this paper is organized as follows. Section 2 contains brief description of sequential implementation of BCO algorithm for scheduling independent tasks. Parallelization strategies and implementation details are given in Section 3, experimental evaluation is described in Section 4, while Section 5 concludes the paper.
2. Bee Colony Optimization for Scheduling problem
Intuitive formulation of the considered problem is: Let T=1,2,…,n be a given set of independent tasks, and M=1,2,…,m a set of identical machines. We denote by li the processing time of task i, i = 1,2,…,n. All tasks are mutually independent and each task can be scheduled to any machine. All given tasks must be executed. Task preemption is not allowed. Task should be scheduled to exactly one machine and machines can execute one task at a time. The goal is to find a schedule of tasks to machines such that the corresponding completion time of all tasks (the so called makespan) is minimized.

Bee Colony Optimization (BCO) meta-heuristic belongs to the class of Nature-Inspired Algorithms. This technique uses an analogy between the way in which bees in nature search for a food, and the way in which optimization algorithms search for an optimum of (given) combinatorial optimization problems.
The BCO algorithm parameters whose values need to be set prior the algorithm execution are as follows:

• B - The number of bees involved in search;

• NC - The number of constructive moves (selected task-machine pairs, in this case) during one forward pass.

The following is the pseudo-code of the BCO algorithm:

1. Initialization: an empty solution is assigned to each bee; stopping criteria is determined.

2. Do
(a) Do

//forward pass

i. For (b = 0; b < B; b + +)

 For (s = 0; s < NC; s + +) //count moves

 1) Evaluate all possible moves;

 2) Choose one move using roulette wheel
//backward pass

ii. For (b = 0; b < B; b + +)

Evaluate partial objective function value for bee b;

iii. For (b = 0; b < B; b + +)

 Loyalty decision using roulette wheel for bee b;

iv. For (b = 0; b < B; b + +)

If (b is follower), choose a recruiter by roulette wheel.

while iteration is not completed.

(b) Evaluate all solutions and find the best one.

while stopping criteria is not satisfied.
In [4] the authors applied BCO heuristic algorithm to the problem of static scheduling of independent tasks on identical machines. Here, we propose various strategies for its parallelization.
3. PARALLELIZATION STRATEGIES
The main goal of applying parallelization to an algorithm is speeding up the computations needed for solving a particular problem by engaging several processors and dividing the total amount of work between them. This goal may be defined in one of the following two ways: 1) accelerate the search for the same quality solution or 2) improve the solution quality by allowing more processors to run the same amount of (CPU or wall-clock) time as the single one does. When meta-heuristics are considered, the combination of gains may be obtained: parallel execution can enable efficient search of different regions of the solution space yielding to the final solution quality improvement within smaller amount of execution time.
One of the first classifications of meta-heuristic parallelization strategies [5] was based on controlling the search process. It resulted in two main groups of parallelization strategies: single walk and multiple walks. Single walk parallelization assumes that the unique search trajectory is generated and only required calculations are performed in parallel. It is based on fine granularity of tasks to be executed in parallel and usually is devoted to speed up the execution without affecting the final solution quality. Multiple walk parallelization involves different search trajectories explored by different processors. It assumes medium to coarse granulation of tasks that could be executed independently or in cooperation. Independent execution is the parallel simulation of the multistart execution that does not involve information exchange during the search. Cooperative execution assumes data exchange during the search which affects the search trajectory on each processor.
To refine the classification of parallelization strategies, one has to consider communication aspects (synchronous or asynchronous) and search parameters (same or different initial point and/or same or different search strategies). The resulting classification is described in details in [6].
In the rest of this section we describe parallelization strategies for BCO having in mind completely connected distributed memory multiprocessor architecture.
Parallelization of BCO for Scheduling

The BCO algorithm is created as a multi agent system. As we already mentioned this provides a good basis for the parallelization on different levels. Parallelization on high level assumes coarse granulation of tasks and can be applied, for example, to iterations of BCO. Smaller parts of BCO (forward and backward passes within a single iteration) also contain a lot of independent executions and are suitable for low level parallelization. In this work we consider both strategies in a synchronous way.

Coarse grained parallelization in its simplest form represents the independent execution of BCO on different processors. It could be obtained by the division of stopping criteria among processors. For example, if the stopping criteria is allowed CPU time (given as a runtime value in seconds), we could run BCO in parallel on q processors for runtime/q seconds. Similar rule can be introduced in the case when stopping criteria is allowed number of iterations. In both cases each processor performs independently sequential variant of BCO, but with reduced value of the stopping criteria. We named this variant of parallelized BCO distributed BCO (DBCO). Other way to implement coarse grained parallelization strategy could be the following: Instead of the stopping criterion we could divide the number of bees. Namely, if sequential execution uses B bees for the search, our parallel variant executing on q processors is using B/q bees only. This way results in sequential BCO on each processor, but with smaller number of bees. This is also distributed BCO, that we will refer to as BBCO since the bees are distributed among processors. Independent execution on different processors allows us also to change search parameters and therefore, it belongs to the multiple walk group.

Each artificial bee acts as an individual agent during the forward pass when partial solutions are generated. The generation of partial solution is independent from the rest of the computations. This leads us to the fine level parallelization (the one from single walk group). Within the concrete implementation, we have the following scenario: forward pass is executed independently on each processor while backward pass requires tight coordination between processors. For the corresponding computations within backward pass it is necessary to have the information about all generated partial solutions. Nevertheless, those computations could be done either sequentially by a single processor (master), or spread among all processors and accompanied by required communication. This communication is known to be the main bottleneck of parallel execution if distributed memory multiprocessor system is used. Having in mind that our parallel architecture is distributed memory one we need to minimize data exchange between processors. Namely, it is important to reduce both the amount of data and the number of transfers (messages).

To determine if backward pass should be performed sequentially or in parallel we analyzed the quantity of required communications and computations in both cases. Let us assume that each processor is performing executions for a single bee. In the case when master (processor that communicates with user usually marked as processor 0) is supposed to execute backward pass, the necessary steps are: receiving all other (B-1) partial solutions from the slaves (the other q-1 processors), calculations for all B partial solutions and sending new partial solutions to corresponding slave. Meanwhile, after sending the data, slaves wait for the master to finish calculations and send back the new partial solutions. On the other hand, the execution of backward pass in parallel consists of: broadcasting all partial solutions between processors; evaluating partial solutions; sharing pieces of loyalty vector among all processors and recruiting based on the loyalty vector information.
It is obvious that in parallel execution of backward pass we have fewer calculations. It also seems that we have less communications and therefore we expect to have better results if we implement backward pass in parallel. Our implementation of this strategy will be called FBCO.

It requires that we define the relation between the number of processors q and the number of bees B. Namely, each processor is responsible for B/q bees and these two numbers should be divisible.

4. EXPERIMENTAL EVALUATION

The proposed parallelization strategies are tested on various problem instances, the same one that have been used in [4]. This allows us to easily compare sequential and parallel versions of the BCO and measure the performance of various parallelization strategies.

The well known performance measures for parallel programs are speedup Sq and efficiency Eq, [7, 8]. They are defined as follows:

[image: image1.wmf]q

best

seq

q

q

q

best

seq

q

qT

T

q

S

E

T

T

S

=

=

,

=

 (1)

Here,
[image: image2.wmf]best

seq

T

 denotes the execution time of best known sequential algorithm on a single processor, while Tq represents the execution time of the parallel algorithm on q processors.

When meta-heuristics are under consideration, the performance of parallelization strategy is influenced also by the quality of final solution. Namely, meta-heuristics represent stochastic search procedures (and BCO is not an exception) which may not result with a same solution even in repeated sequential executions. On the other hand, parallelization may assure the extension of the search space which could yield to both improvement or degradation of the final solution quality. Therefore, the quality of final solution should also be considered as a parameter describing parallelization strategy performance.

Our target architecture for parallelized BCO is homogeneous completely connected network of processors. Parallel versions of BCO are executing on all q processors, i.e. computations are assigned to master too. In our experiments we used different number of processors ranging from 2 to 12.

Distributed BCO (DBCO)

First, we tested our coarse grained parallelization strategy, named distributed BCO (DBCO). We executed our DBCO on the hardest examples reported in [4] and some of the results are presented here. The Table 1 contains scheduling results for test instance with a priori known optimal solution consisting of 100 tasks while the number of machines is changed (9 and 16). We also vary the number of processors q from 1 (sequential execution) up to 5. For all examples, within DBCO we set B=5, NC=10 and stopping criterion is selected to be 1000 iterations.

Table 1: DBCO Scheduling results – Iogra100 test problems with known optimal solutions

	m
	q
	OPT
	DBCO
	DBCO

CPU time
	Sq
	Eq

	9
	1

2

3

4

5
	800
	807
806
809
808
808
	5.03
2.59
1.74
1.33
1.05
	1.00
1.94
2.89
3.78
4.79
	1.00
0.97
0.96
0.95
0.96

	16
	1

2

3

4

5
	800
	819

821

822

819

828
	5.15

2.62

1.83

1.38

1.05
	1.00

1.96

2.81

3.73

4.90
	1.00

0.98

0.94

0.93

0.98

Easier instances (scheduling on smaller number of machines 2, 4) in our experiments are solved to optimality with almost linear speedup and the efficiency above 90% for DBCO. Based on the results presented in Table 1, we can conclude that for harder examples (scheduling on larger number of machines) DBCO achieves same speedup and efficiency, but preserving solution quality is not guaranteed. Although the parallelization may cause some degradation due to the reduction of stopping criterion, in some cases a slight improvement in the solution quality could also be noticed.
Bees distribution within BCO (BBCO)
The second way to implement coarse grained parallelization strategy (by dividing the total number of bees among the processors), named BBCO, is also tested on hard examples (Iogra100). Here we assume that B=12, NC=10 and stopping criterion is set to 1000 iterations. The number of processors q takes the following values: 1, 2, 3, 4, 6 and 12. This actually means that sequential BCO works with 12 bees, BBCO on q=2 processors executes 1000 iterations with 6 bees, and so on. Finally, on q=12 processors, BBCO is searching for minimum schedules running 1000 iterations with one bee per processor. The results are given in Table 2.
Table 2: BBCO Scheduling results – Iogra100 test problems with known optimal solutions

	m
	q
	OPT
	BBCO
	BBCO

CPU time
	Sq
	Eq

	9
	1

2

3

4

6

12
	800
	807
807
806
806
806
806
	11.88
5.82
3.54
2.18
0.80
0.25
	1.00
2.04
3.56
5.42
14.8
47.5
	1.00
1.02
1.12
1.36

2.48
3.96

	16
	1

2

3

4

6

12
	800
	819

821

822

825

825

823
	12.18

5.89

3.59

2.22

0.91

0.26
	1.00

2.07

3.39

5.49

13.3
46.8
	1.00

1.03

1.13

1.37

2.23

3.90

This type of coarse grained parallelization strategy assures excellent speedup and efficiency, due to the reduction of computations assigned to each processor. This resulted in super linear speedup and efficiency highly above 1.00. Nevertheless, the difficulty of a given scheduling problem can not always be conquered and small degradation of the solution quality may occur. On the other hand, as Table 2 shows, sometimes the improvements are also evident.

Fine grained BCO (FBCO)

Due to the intensive communication between processors within FBCO, we need to minimize the amount of data exchanged during the search. At the end of each forward pass, only the values of the objective function (i.e. schedule lengths) are broadcasted between processors. During the backward pass, loyalty vectors and normalized values of partial solution qualities are broadcasted, while components of recruiter's partial solution are sent only upon request (i.e. only when recruiter is selected by an uncommitted bee stored on different processor). Results obtained by FBCO are given in Table 3.
Table 3: FBCO Scheduling results – Iogra100 test problems with known optimal solutions

	m
	q
	OPT
	FBCO
	FBCO

CPU time
	Sq
	Eq

	4
	1

2

3

4

6

12
	800
	800

800

800

800

800

800
	11.51

14.02

14.99

15.67

16.42

18.28
	1.00

0.82

0.77

0.73

0.70

0.63
	1.00

0.41

0.26

0.18

0.12

0.05

	16
	1

2

3

4

6

12
	800
	819

821

822

823

825

825
	12.18

14.30

14.94

15.75

16.46

18.39
	1.00

0.85

0.82

0.77

0.74

0.66
	1.00

0.43

0.27

0.19

0.12

0.06

The parameters B, NC and q are the same as in BBCO. From the Table 3, we can see that this parallelization strategy results in slowing down the computations due to the communication delays caused by intensive data exchange between processors. This strategy is obviously more suitable for shared memory multiprocessor systems.
5. CONCLUSION

Two synchronous parallelization strategies for Bee Colony Optimization (BCO) meta-heuristic are proposed in this paper. They are implemented on completely connected homogeneous multiprocessor system with processors communicating by exchanging messages.

The coarse-grained strategy is based on independent execution of portions of BCO algorithm on different processors and exchanging best solution at the end. It is implemented in two variants. For the first variant the obtained speedup is almost linear and solutions quality is not degraded significantly (below 3% with respect to the sequential result). The second one performed even better resulting in superlinear speedup and negligible degradation of the solution quality. Fine grained parallelization strategy represents parallelization at lower level and is actually based on cooperative work of several processors. Since it requires intensive exchange of data between the processors during the search, it is more suitable for shared memory multiprocessor systems. This represents possible idea for future work as well as dealing with the asynchronous parallelization strategies.
REFERENCES

[1] Lučić, P., Teodorović, D., Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, 2001, pp 441–445.
[2] Lučić, P., Teodorović, D., Transportation modeling: an artificial life approach. In: Proceedings of the 14th IEEE ‘‘International Conference on Tools with Artificial Intelligence, Washington, DC, 2002, pp. 216–223

[3] Lučić, P., Teodorović, D., "Computing with bees: attacking complex transportation engineering problems", Int. J. Artif. Intell. T. 12 (2003) 375–394

[4] Davidović, T., Šelmić, M., Teodorović, D., Bee Colony Optimization for Scheduling Independent Tasks to Identical Processors, Submitted for publication, 2009.

[5] Verhoeven MGA, Aarts EHL "Parallel local search", J. Heur. 1 (1995) 43-65.
[6] Crainic, T.G., Hail, N., Parallel meta-heuristics applications . In: Alba E (eds) Parallel Metaheuristics, John Wiley & Sons, Hoboken, NJ 447-494, 2005.
[7] Brawer, S., Introduction to Parallel Programming, Academic Press, Inc, 1989.
[8] Quinn, M.J., Designing efficient algorithms for parallel computers, McGraw-Hill, 1987.

PAGE
2

[image: image3.jpg][image: image4.jpg]_1320838664.unknown

_1320859854.unknown

