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Abstract: Matheuristics represent heuristic optimization methods based on hybridizing exact solvers with
metaheuristics. Usually, the exact solvers work on Mathematical Programming (more precisely Mixed Integer
Linear Programming, MILP) formulation of the considered problem. Metaheuristic principles are used to define
subproblems (e.g., by fixing values for a subset of variables) and exact solver is then invoked to determine
values for the remaining variables. The main goal of this paper is to promote three matheuristics that explore
Variable Neighborhood Search (VNS) as metaheuristic part. These are Variable Neighborhood Branching (VNB),
Variable Neighborhood Decomposition Search for 0-1 MIP problems (VNDS-MIP), and Variable Intensity
Neighborhood Search (VINS).
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1. INTRODUCTION

Matheuristics [7] become very popular in the last decade. Workshops devoted to the development and ap-
plication of these general-purpose model-based optimization techniques are organized biannually since 2008
(https://mh2018.sciencesconf.org/). The generality of these methods means that matheuristics do not
use a priori knowledge about the problem being optimized and that enables their application to the various range
of problems. Matheuristics are actually heuristic methods obtained by hybridizing metaheuristics and exact
solvers. The main idea behind this hybridization is to use metaheuristic rules for fixing values of some binary
variables and creating subproblems for exact solvers. Sometimes, they can even be considered as the exact
method, i.e., given enough resources (unlimited memory and running time) they can provide optimal solution.

In the recent literature, neighborhood based metaheuristics are usually combined with mathematical program-
ming optimization techniques to design effective matheuristics. We review three state-of-the-art matheuristics
based on Variable Neighborhood Search (VNS) [1, 3, 10]: Variable Neighborhood Branching (VNB) [4],
Variable Neighborhood Decomposition Search for 0-1 MIP problems (VNDS-MIP) [6], and Variable Intensity
Neighborhood Search (VINS) [5]. In order to describe these algorithms, we first introduce some notation and
definitions.

Matheuristics rely on Mixed Integer Linear Programming, MILP formulation and usually operate exclusively
on binary variables as they can take only two possible values, zero and one. On the other hand, it is straightfor-
ward to reformulate a model containing integer variables into a model with binary variables having an additional
index.

In order to introduce neighborhood structures in the space of binary variables, we need to define the distance
between two solutions x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x

′
n). Hamming distance is obvious choice, i.e.,

δ(x,x′) = ∑
i
| xi − x′i |, (1)

where i refers to the subset of binary variables. If the original MIP is denoted by P, let LP(P) represent its
linear relaxation (obtained when in P the integer requirements on variables are released. The solution of LP(P)
is usually denoted by y. The distance (1) could be generalized to δ(x,y), where | xi − yi | can take any value
from the interval [0,1]. (P |C) is used to mark the subproblem of P obtained by adding the set of constraints C,
while P(k,x) = (P | δ(x,x′)≤ k), for k = 1,2, . . . denotes the solution subspace of P containing all the solutions
whose distance from a given solution x is at most k.P(k,x) could be used to define neighborhoods:

Nk(x) = {x′ ∈ X | δ(x,x′) ≤ k}. (2)

More precisely, neighborhood Nk(x) contains all the solutions differing from x in the values of at most k binary
variables. It is easy to see that Nk(x)⊂ Nk+1(x), and therefore, if neighborhood Nk+1(x) is completely explored,
it is not necessary to search in neighborhood Nk(x).

An alternative way to define neighborhoods is using variable states. Each binary variable can be in one of the
two possible states: fixed and relaxed. The fixed state means that the exact MIP solver is not allowed to change



its value during the optimization process. On the other hand, we want the optimizer to find the best value of
the variables in relaxed state. Neighborhood structures are then defined with respect to the indices and number
of relaxed variables. Local search in the space of binary variables is realized by invoking exact solver on a
subproblem (P |C) obtained by adding the set of neighborhood defining constraints C to the original problem P.
The exact solver is allowed to run for a given time limit to avoid long executions in the cases when the defined
neighborhoods are too large. The decision about the next step is then made based on the return status of the
exact solver and is specific for each particular matheuristic.

All matheuristic methods described in this paper (VNB, VNDS-MIP, VINS) apply VNS rules for creating
initial solutions and subproblems and CPLEX exact solver as a Local Search procedure to improve the current
best solution. The paper is organized as follows. After the introduction, three sections to follow are devoted to
the description of selected matheuristics. The paper concludes with Section 5.

2. VARIABLE NEIGHBORHOOD BRANCHING

Variable neighborhood branching (VNB) is proposed in [4]. The input parameters for VNB are 0-1 MIP problem
P, VNS parameters kmin, kstep, kmax, maximum allowed CPU time Tmax, and the time for subproblems tlim. The
pseudo-code of VNB is illustrated by Alg. 1. VNB adds constraints to the original problem P and generates
subproblems explored in both Local Search (LS) and Shaking (SH) phase. The initial solution is obtained
as the first feasible solution found by CPLEX. It becomes also the current best solution. Instead of standard
LS, VNB performs search through multiple neighborhoods, i.e., Variable Neighborhood Descent (VND) [3].
Neighborhoods are defined by adding constraints (2) based on Hamming distance (1) to the original model. The
value for k is updated properly with respect to the CPLEX return status. Actually, VNB uses two indices to
count neighborhoods, k and k1. Index k counts neighborhoods in VND, while in Shaking k1 is used.

The diversification in VNB (Shaking) is performed by invoking CPLEX to find the first feasible solution
within the disk defined by radii k1 and k1 + kstep. If it is necessary, the disk size is increased until a feasible
solution is found. VND is realized by executing CPLEX on the defined subproblems until the pre-specified
time limit tlim is reached. Subproblems are controlled by the value for the current neighborhood index k. At the
beginning of VND, k = 1 is set. If CPLEX proves that no feasible solution exists in the current neighborhood k,
the value for k is increased by 1. In the case when in Nk(x) CPLEX finds an optimal solution or better feasible
solution, an improvement is recorded and k is reset to 1. Finally, if no feasible solution is found within a tlim
time limit, VND procedure is terminated and the control is given to VNB. Move or Not step is realized in the
standard way.

It should be noted here that the maximum number of neighborhoods in VND is not specified. Of course, it is
pointless for k or k1 to take values larger than the number of binary variables in P. In such a case, VNB acts as
an exact algorithm as CPLEX is executed on the whole problem P. Another remark related to Alg. 1 is that
Shaking and Local Search (VND) steps are reversed. This is due to the fact that the first feasible solution is
considered as a result of Shaking in the whole search space.

3. VARIABLE NEIGHBORHOOD DECOMPOSITION SEARCH

Variable Neighborhood Decomposition Search (VNDS) was proposed in [2] to deal with hard optimization
problems. It is a two-level optimization scheme based on VNS and on decomposition of the original problem
into subproblems. Once the subproblems are solved, the solution of the whole problem is obtained by combining
corresponding parts. VNDS for 0-1 MIPs appeared in [6]. It applies VNDS scheme on the set of binary variables
to decompose the original problem. At each step, the original problem P is decomposed into two parts: in the
first part, the variable values are fixed and this part should remain unchanged; the second part consists of relaxed
variables whose values are to be determined by the exact MIP solver within the given time limit.

The first step of VNDS-MIP is to find an integer feasible solution x of the considered optimization problem
P and an optimal solution y of LP(P). The current best solution xbest is initialized by x. Using generalized
definition for the distance δ(x,y), binary variables are sorted in a non-decreasing order with respect to | xi − yi |.
More precisely, if p =| B | (B being the set of binary variables) and δ j =| x j −y j |, j ∈ B , then x j, j = 1,2, . . . , p
are ordered such that δ1 ≤ δ2 ≤ . . . ≤ δp. Subproblems in VNDS-MIP are generated by changing states of
binary variables, i.e., by fixing values for a subset of ordered binary variables to their values in the current best
solution xbest . The variables to be fixed are the ones with values closest to their linear relaxation counterparts
(see Fig. 1). The remaining variables are considered relaxed, and their number defines the size of the subproblem
(neighborhood) to be solved by CPLEX within the given CPU time limit. In Fig. 1, variables on the left side
(including shaded part) are fixed, while the remaining variables (towards the right side of the figure) are relaxed.



Algorithm 1 Pseudo-code for VNB
procedure VNB(P,Tmax, tlim,kmin,kmax,kstep)

IntSolLim ← 1;T L ← Tmax
status ← MIPSolve(P,T L, IntSolLim,x)
if (status = no_ f easible) then

Print("The problem cannot be solved within the given time limit.")
Exit

else
xbest ← x; fbest ← f (x);x′ ← x; f ′ ← f (x)

end if
t ← 0
while (t < Tmax) do � Main VNB loop

cont ← True;k ← 1;k1 ← kmin; IntSolLim ← MaxSol
while (cont ∧ t < Tmax) do � VND

T L ← min{tlim,Tmax − t}
AddConstraint(d(x′,x)≤ k)
status ← MIPSolve(P|C,T L, IntSolLim,x′′)
RemoveConstraint(d(x′,x)≤ k)
switch (status) do

case no_ f easible :
cont ← False

case opt_sol :
AddConstraint(d(x′,x)≥ k+1)
x′ ← x′′; f ′ ← f (x′′);k ← 1

case f easible_sol :
AddConstraint(d(x′,x)≥ 1)
x′ ← x′′; f ′ ← f (x′′);k ← 1

case in f easible :
k ← k+1

end switch
t ← GetUserTime()

end while
if ( f ′ < fbest ) then � // Move or Not

xbest ← x′; fbest ← f (x′);k1 ← 1
else

k1 ← k1 + kstep; if (k1 > kmax) then k1 ← kmin
end if
cont ← True;k1 ← kmin; IntSolLim ← 1
while (cont ∧ t < Tmax) do � // Shaking

T L ← Tmax − t
AddConstraint(k1 ≤ d(xbest ,x)≤ k1 + kstep)
status ← MIPSolve(P|C,T L, IntSolLim,x′)
if (status = in f easible∨ status = no_ f easible) then

k1 = k1 + kstep
else

cont ← False
end if
RemoveConstraint(k1 ≤ d(xbest ,x)≤ k1 + kstep)
t ← GetUserTime()

end while
end while
return (xbest , fbest )

end procedure
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Figure 1 Illustration of subproblem generation in VNDS-MIP (Figure is provided by Dr. Jasmina Lazić)

After the binary variables are sorted, q =| { j ∈ B,s.t. δ j = 0} | is determined and it is used to calculate values
for kmin, kmax, and kstep as it is shown in Alg. 2. Then the appropriate subsets of variables are fixed/released
and time-limited CPLEX is invoked to solve the obtained subproblem. If a new best solution is obtained, an
attempt of further improvement is made by applying VND (the same one used in VNB) to the xbest , otherwise,
the subproblem is increased by properly changing neighborhood size for searching. In the case when the
subproblem involves all variables with positive distance from the linear relaxation counterparts (k+kstep > kmax),
the search is extended (half by half) to the remaining binary variables. If all binary variables were already
relaxed during the search (which actually means that the whole problem was considered as a subproblem and
treated by CPLEX), the execution of VNDS-MIP ends (flag execute is set to False). This means that either
CPLEX was able to solve the original problem P (optimal solution has been found) or the maximum time limit
was reached and the best feasible solution is reported to user. As VNDS-MIP is able to prove the optimality,
given enough time and memory, we can consider it as an exact solution method.

4. VARIABLE INTENSITY NEIGHBORHOOD SEARCH

VINS [5] is inspired by the VNDS-MIP matheuristic [6] and Variable Intensity Local Search (VILS), a hybrid
heuristic developed for multi-resource generalized assignment problem [9]. It generalizes the idea of fixing
and relaxing subsets of binary variables in such a way that, contrary to VNDS-MIP which uses a single pattern,
VINS exploits different patterns as it is the case in VILS.

As in VNDS-MIP, VINS solves the linear relaxation of the MIP first, and than finds the first feasible solution.
The corresponding solutions are marked by y and x, respectively. Having these two sets of variable values, the
distances between x and y based on the generalized form of Eq. (1) are calculated and the variables are sorted in
the non-decreasing order according to these distance values. In VNDS-MIP, variables having similar values
in x and y were considered to offer less space for improvement, however, this may not be true. Therefore, 10
different patterns (referred to as neighborhoods) for generating subproblems are defined in VINS as follows.

N1: α% of the worst variables are released;
N2: variable set is divided into 10 bins and α/10% worst variables are released in each bin;
N3: starting at random position α% variables are released;
N4: at 10 random positions, α/10% variables are released;
N5: α% of the best variables are released;
N6: in 10 equal bins α/10% best variables are released;
N7: α/2% of best and α/2% of worst variables are released;
N8: in 10 equal bins the same pattern as in N7 is applied;
N9: random α% variables are released;
N10: in 10 equal bins, random α/10% variables are released.

Terms "the best" and "the worst" are used here to mark variables with the lowest and the biggest distance
between the values in current best solution and in the linear relaxation solution, respectively. The value of
parameter α defines the neighborhood size, i.e., the percentage of variables that will be released and given to
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Algorithm 2 Pseudo-code for VNDS-MIP
procedure VNDS-MIP(P,Tmax, tlim)

IntSolLim ← 1;T L ← Tmax
l pstat ← LPSolve(P,T L,y)
status ← MIPSolve(P,T L, IntSolLim,x)
if (status = no_ f easible) then

Print("The problem cannot be solved within the given time limit.")
Exit

else
xbest ← x; fbest ← f (x);x′ ← x; f ′ ← f (x); p ←| B |

end if
t ← 0;execute ← True
while (execute∧ t < Tmax) do � Main VNDS-MIP loop

Calculate(δ);x ← Sort(xbest ,y);q ←| { j ∈ B,s.t. δ j = 0} |
kmax ← p−q;kmin ← kmax/10;kstep ← kmin;k ← kmin
cont ← True; IntSolLim ← MaxSol
while (cont ∧ t < Tmax) do

T L ← min{tlim,Tmax − t}; improved ← True � Local Search
FixAndRelease(P,k)
AddConstraint( f (x),L, fbest )
status ← MIPSolve(P|C,T L, IntSolLim,x′′)
ReleaseAll(P|C)
if (status = no_ f easible∨ status = in f easible) then

improved ← False
end if
if (improved) then � Move or Not

V ND(P,Tmax, tlim,k,x′′,x′, f ′)
xbest ← x′; fbest ← f (x′);k ← kmin;cont ← False

else
if (k+ kstep > kmax) then kstep ← max{[k/2],1}
if (k ≤ p) then

k ← k+ kstep
else

execute ← False
end if

end if
t ← GetUserTime()

end while
end while
return (xbest , fbest )

end procedure

time-limited CPLEX solver for improving. In addition to changing neighborhood types, VINS allows changes
in the size of neighborhoods. As the search advances, the size of neighborhoods α increases, as well as the
corresponding time tlim to limit CPLEX engagement in the resulting subproblems. Therefore, with respect to
VNDS-MIP, VINS has two new input parameters: an array of neighborhood sizes al phas and the corresponding
array of times for subproblems time_limits.

The proposed VINS does not explore the "first improvement" VNS strategy that is adopted in VNB and
VNDS-MIP. Instead of moving to N1 of the smallest size upon each improvement of the current best solution,
the neighborhoods are searched in round robin fashion, starting from N1 till N10, in each of the available sizes.
In the case an improvement is made, the current best solution is updated, the corresponding constraint limiting
the objective function value is added to the model, the variables are re-sorted by the distance between values
in current best solution and the linear relaxation solution, and the search continues in the next neighborhood
of the same size. The size never decreases as it is the case in other two methods. When all neighborhoods
are explored, the size is increased and the search continues in N1. If there is enough time and all sizes are
explored, CPLEX is invoked to additionally improve the current best solution acting on the whole problem P.
The proposed procedure is illustrated by Alg. 3.

The Linux versions of all methods are available at the Mathematical Institute of the Serbian Academy of
Sciences and Arts and can be provided by the authors upon a request. For all of them, data about the problem to
be solved should be provided in a form of .lp file which can be generated automatically in most of the exact
solvers (CPLEX, Gurobi, etc.). The three described methods are compared for the first time in [5] on the miplib3
instances and on the container ships routing problem from [8]. Recently, a new comparison on allocating of
passenger ferry fleet in maritime transport problem is reported in [11].

5. CONCLUSION

In order to promote three matheuristic methods based on Variable Neighborhood Search principles and developed
by Serbian researches we presented their brief description. Successful applications confirming their usefulness
can be find in numerous papers from the relevant literature and we mentioned the most recent few.



Algorithm 3 VINS
procedure VINS(P, Tmax, al phas, time_limits)

IntSolLim ← 1;T L ← Tmax
l pstat ← LPSolve(P,T L,y)
status ← MIPSolve(P,T L, IntSolLim,x)
if (status = no_ f easible) then

Print("The problem cannot be solved within the given time limit.")
Exit

else
xbest ← x; fbest ← f (xbest )

end if
t ← 0;cont ← True
N ← N1
α ← Al pha1
T L ← TimeLimit1
IntSolLim ← ∞
x ← Sort(xbest ,y)
while (cont ∧ t < Tmax) do � Main VINS loop

T L ← min{tlim,Tmax − t}
FixAndRelease(N,α)
status ← MIPSolve(P|C,T L, IntSolLim,x)
improvement ← Improved(x)
if (improvement) then � Checking for Improvement

xbest ← x; fbest ← f (x)
AddConstraint( f (x),L, fbest )
x ← Sort(xbest ,y)

end if
N ← NextNeighborhood � Move Step
t ← GetUserTime()
if (N = null) then

N ← N1
α ← NextAl pha
tlim ← NextTimeLimit
if (α = null) then � Final improvement of the whole problem

T L ← min{tlim,Tmax − t}
status ← MIPSolve(P,T L, IntSolLim,x)
cont ← False

end if
end if

end while
return (xbest , fbest )

end procedure
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