

JEDNA STRATEGIJA ZA PARALELIZACIJU VNS METODE ZA

REŠAVANJE PROBLEMA RASPOREDJIVANJA
*

A STRATEGY FOR PARALLELIZATION OF VNS FOR

MULTIPROCESSOR SCHEDULING PROBLEM

Tatjana Davidović

1
, Teodor Gabriel Crainic

2

1
MATEMATIČKI INSTITUT SANU, Knez-Mihailova 35/1, 11001 Beograd

2
DEPARTEMENT MANAGEMENT ET TECHNOLOGIE,

Université du Québec à Montréal and

Centre de recherche sur les transports, Université de Montréal

Sažetak: U radu se predlaže jedna od mogućih strategija paralelizacije metode promenljivih okolina

za primenu na problem rasporedjivanja. Cilj paralelizacije je kako ubrzanje izvršavanja korišćenjem

više procesora, tako i popravljanje kvaliteta dobijenog rešenja obezbedjivanjem pretraživanja na

širem regionu prostora rešenja.

KLJUČNE REČI: METODA PROMENLJIVIH OKOLINA, PROBLEM RASPOREDJIVANJA,

PARALELIZACIJA, UBRZANJE IZVRŠAVANJA.

Abstract: In this paper we propose a possible strategiz for the parallelization of the VNS

heuristics to solve multiprocessor scheduling problem with communication delays.Our main goal is

to speedup the executions by engaging several processors. Moreover, we hope to improve the

quality by spreading up the search towards the different regions of the solution space.

KEY WORDS: VARIABLE NEIGHBORHOOD SEARCH, MULTIPROCESSOR SCHEDULING PROBLEM,

PARALLELIZATION, SPEEDUP OF EXECUTIONS.

1. INTRODUCTION

The Multiprocessor Scheduling Problem With Communication Delays (MSPCD) is as follows

[4,5]: tasks (or jobs) have to be executed on several processors; we have to find where and when

each task will be executed, such that the total completion time is minimum. A duration of each task

is known as well as precedence relations among tasks, i.e. what tasks should be completed before

some other could begin. In addition, if dependent tasks are executed on different processors, the

data transferring time (or communication delay) that are given in advance are also considered. The

tasks to be scheduled are represented by a weighted directed acyclic graph (DAG) [2,9], while

multiprocessor architecture is assumed to contain identical processors and is modelled by a distance

matrix [2,6].

*
This research has been supported in part by NSF Serbia. The first and the third authors have been supported by grant no. 1583.

The sequential implementation of the VNS heuristic for solving MSPCD was poposed in [4].

Although performing best in average, VNS shows significant deviations in the cases with known

optimal solutions. As one of the possible strategies for the performance improvement we propose its

parallelization. There are different strategies for the parallelization of VNS heuristic. For example,

the partitioning of the search space which may be realized in two ways: at low level by

parallelization of LS procedure and at coarse level where in parallel we execute the whole VNS

procedures on different parts of solution space. The other strategy may be the cooperation: several

different (sequential or parallel) VNS methods run simultaneously and exchange the relevant

information. In this paper we propose parallelization obtained by simultaneous execution of

different steps of the VNS procedure. The paper is organized as follows: in the next section the

original implementation of VNS heuristic is briefly described. Section 3 contains the description of

parallelization strategy and experimental results on random test examples with known optimal

solutions are given in section 4. Section 5 concludes the paper.

2. SEQUENTIAL VNS HEURISTIC FOR SCHEDULING PROBLEM

In applying VNS method to the MSPCD [4] we defined S, the set of all permutations of n tasks to

be a set of solutions, and XS the set of feasible solutions (feasible permutation means that the

order of tasks in that permutation obeys precedence constraints defined by the task graph: a task

cannot appear before any of its predecessors or after any of its successors in a feasible permutation).

Having a feasible permutation x, we are able to evaluate the objective function value in a unique

way, if we follow always the same rule of assigning tasks to processors (for example, ES rule) in

the order given by that permutation. Neighborhoods are defined using elementary transformations

of permutation. We used here Swap-1 neighborhood. Next step in the implementation of VNS

heuristic [4] is to define Local Search (LS) and Shaking procedures. LS procedure in given

neighboirhood of a solution x consists of generation of all feasible neighbors and performing

scheduling rule (ES) to calculate the value of objective function (schedule length). For shaking only

Swap-1 neighborhood was used. Shaking procedure is defined by random selection of a task (or a

pair of tasks) and perform the corresponding transformation.

3. PARALLELIZATION STRATEGY

The experiments performed with sequential implementation of permutation-based VNS [4,5]

showed that for sparse task graphs, search space (set of feasible permutations) is too large to be

exploited efficiently. The main goal of parallelization is to speedup the computations by engaging

several processors and divide the total amount of work between them. This goal may be defined in

one of the following two ways: 1) accelerate the search for the same quality solution or 2) improve

the solution quality by allowing more processors to run the same amount of CPU time as the single

one does. When metaheuristics are parallelized both definitions may be used simultaneously, i.e. the

benefit may be doubled. Moreover, the third goal may be stated according to the nondeterminism of

the metaheuristic search procedure: To explore distinct search regions and to further improve the

solution quality.

The place suitable for parallelization is combination of shake and LS steps. They always go together

and can be performed simultaneously in different ways. For example in multistart fashion, as it was

implemented in [8], or in a way to allow the wider exploration of the search step, like in [1]. This

last strategy for the parallelization of the VNS algorithm we implemented and called parallel VNS

(PVNS). The main idea is to explore the different neighborhoods in parallel. This is realized by

performing shaking (in different neighborhoods) and LS (sequential) on different processors at the

same time (Fig. 1).

Sh k()

LS
i

Sh k()

LS
q

Sh k()

LS
1

Sh k()

LS
2

update x
m i n

INIT

STOP?

..
. ..
.

Fig. 1 Ilustration of the parallel VNS

We implemented this strateqy on multiprocessor system containing q+1 processors: one for the

communication with user, initialization of the relevan data, coordination and synchronization

between the other processors by collecting all solutions and updating global best one, taking care of

the neighbourhood index update and the stopping criterion. Other processors perform the

combination of shaking and LS procedure in given neighborhood.

4. EXPERIMENTAL EVALUATIONS

For the experiments with PVNS we use same examples as the ones used in the paper on sequential

VNS [5]. The examples are generated according to the procedure described in [3], and have

preselected values for the optimal solutions. We use ten examples of task graphs containing n=200

tasks with different edge densities and known value of the optimal schedule SLopt=1200.

We tested several variants of the original (sequential) VNS algorithm and best results were obtained

by using restricted version, the one that does not explore the whole neighborhood. In the table to

follow, we give the results of the execution parallel communication-based restricted VNS

(PCRVNS) on several multiprocessor architectures.

Table 1. Percentage of deviations from the known optimal solutions for n=200 within 10 repetitions

q %dev

Single av. Over 10 best of 10

1 22.16 22.16 22.16

5 18.16 20.71 17.54

10 16.47 19.87 16.32

15 15.40 18.23 13.57

20 15.27 16.95 10.24

We fix the other relevant VNS parameters and execute First Improvement (FI) LS procedure within

given CPU time limit tmax=750 sec. The values for VNS parameters are [4]: kmax=100(n/2), kstep=1,

plateaux=0.0.

As we can see from this table, the improvement with parallel VNS is significant although, we do not

gain much with adding new processors since the search is becoming too random. To examine the

speed of the parallel search we were following the improvements in time of the current best sollution

and noticed the linear speedup for the execution: the largest improvements occur at the biginning of

the execution.

5. CONCLUSION

In this paper we propose the parallelization of VNS heuristic for the multiprocessor scheduling

problem with communication delays. The benefits were twofolds: we achieved linear speedup of the

executions and improvement in the solution quality.

6. REFERENCES

[1] Crainic T.G., Gendreau M., Hansen P., Mladenović N., (2004.) COOPERATIVE PARALLEL

VARIABLE NEIGHBORHOOD SEARCH FOR THE p-MEDIAN, J. Heur. 10, 2003. (pp. 289-310)

[2] Davidović T., (2000.) EXAUSTIVE LIST-SCHEDULING HEURISTIC FOR DENSE TASK GRAPHS.

YUJOR, 10(1) (pp. 123-136).

[3] Davidović T., Crainic T. G., (2003.) NEW BENCHMARKS FOR STATIC TASK SCHEDULING ON

HOMOGENEOUS MULTIPROCESSOR SYSTEMS WITH COMMUNICATION DELAYS. Centre de

Recherche sur les Transports, Technical report, CRT-2003-04, Montreal, Canada.

[4] Davidović T., Hansen P., Mladenović N., (2004.) PERMUTATION-BASED GENETIC, TABU AND

VARIABLE NEIGHBORHOOD SEARCH HEURISTICS FOR MULTIPROCESSOR SCHEDULING WITH

COMMUNICATION DELAYS, GERAD Technical report, G-2004-19, Montreal, Canada.

[5] Davidović T., Hansen P., Mladenović N., (2001.) SCHEDULING BY VNS: EXPERIMENTAL

ANALYSIS. SYM-OP-IS 2001, Beograd, 2001. (pp. 319-322)

 [6] Djordjević G., Tošić M., (1996.) A COMPILE-TIME SCHEDULING HEURISTIC FOR MULTI-

PROCESSOR ARCHITECTURES. The Computer Journal, 39(8), 1996. (pp. 663-674)

[7] Mladenović N., Hansen P., (1997.) VARIABLE NEIGHBORHOOD SEARCH. Comp. Oper. Res.,

24(11), 1997., (pp. 1097-1100)

[8] García-López F., Melián-Batista B., Moreno-Pérez J.A., Moreno-Vega J.M. (2002.), THE

PARALLEL VARIABLE NEIGHBORHOOD SEARCH FOR THE p-MEDIAN PROBLEM. J. Heur., 8(3), May

2002. (pp. 375-388)

[9] Sih G. C., Lee E. A., (1993.) A COMPILE-TIME SCHEDULING HEURISTIC FOR INTERCONNECTION-

CONSTRAINED HETEROGENEOUS PROCESSOR ARCHITECTURES. IEEE Trans. on Paral. Dist. Syst.,

4(2), Feb. 1993. (pp. 175-187)

