SYM-OP-IS 2015: XLII International Symposium on Operations Research, 2015

The Variable Intensity Neighborhood Search for 0-1 MIP

Petar Jovanovié

Institute of Physics Belgrade, Belgrade, Serbia
e-mail: petarj@ipb.ac.rs

Tatjana Davidovi¢

Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
e-mail: tanjad @mi.sanu.ac.rs

Jasmina Lazié¢

MathWorks, Inc. Matrix House, Cambridge, United Kingdom
e-mail: jsmnlzc @yahoo.com

Snezana Mitrovi¢ Minié¢
Simon Fraser University, Vancouver, Canada
e-mail: snezanam@sfu.ca

Abstract. We propose a new matheuristic, a heuristic approach based on hybridizing an exact MIP solver with local
search through different neighborhoods. This method explores the idea of fixing a subset of variables and invoking exact solver
to determine values for remaining variables. The number and variation of variables to be fixed are selected in various ways.
Each fixing defines a very large scale neighborhood that is searched by MIP solver. The neighborhood sizes are systematically
increased together with the corresponding time limits increasing the intensity of the search. Therefore, we named this method
Variable Intensity Neighborhood Search (VINS). The ideas for VINS are drown from two other mathheuristics from the
literature: Variable Intensity Local Search (VILS) and Variable Neighborhood Decomposition Search for 0-1 MIP (VNDS-
MIP). For the experimental study, we used two types of test examples, benchmarks from the MIPLIB 3.0 and instances of
the real life problem of routing barge container ships. To examine the performance of the proposed approach, we compare it
against VNDS-MIP. Our preliminary experimental results show that on average our VINS is producing high quality solutions
very fast, outperforming the other method with respect to solution quality or running time, and sometimes both.

Keywords: Mixed-Integer Programming, Local Search, Combinatorial Optimization, Hybrid Heuristics.

1. Introduction cialized hybrid heuristic for multi-resource general-
ized assignment problem proposed in [6] and later de-
scribed in detail in Chap. 10 of [8], we develop a new
method that combines and improves good character-
istics of its ancestors. To evaluate the performance of
our VINS, we compare it against VNDS-MIP on two

Discrete optimization problems are very com-
mon in real-world applications. However, the size of
instances usually exceeds the capacity of computing
resources, despite today’s very rapid technological
development. Therefore, new and efficient solution

methods are always necessary. types of test examples, benchmarks from the MIPLIB
Hybridization became a very popular approach to 3.0 from (http://miplib.zib.de/miplib3/miplib.html),
increasing the performance of metaheuristic methods and barge container ships routing instances [7]. Our
[1, 2]. Special type of hybrids, involving combina- preliminary experimental results show that, for most
tion of an exact solver and a metaheuristic method are of the examples, our VINS is superior to VNDS-MIP
explored in the last decade [3-7]. These hybrids are with respect to both solution quality and running time.
known under the common name model-based meta- The rest of this paper is organized as follows.
heuristics or matheuristics [8]. In Sect. 2 we recall the Mixed Integer Programming
Inspired by the general purpose matheuristic (MIP) formulation for optimization problems. Sect. 3
Variable Neighborhood Decomposition Search for 0- is devoted to the proposed VINS approach. Experi-
1 MIP (VNDS-MIP) proposed in [5] and the Vari- mental study is given in Sect. 4, while Sect. 5 contains
able Intensity Neighborhood Search (VINS), a spe- concluding remarks and directions for future work.

229

2. Problem description

A linear Mixed Integer Program (MIP) is a model
of an optimization problem whose set of variables can
be divided into two nonempty subsets: subset of inte-
ger and/or binary variables and a subset of continuous
variables. The constraints are linear inequalities, and
the objective function is also linear. Thus, MIP can be
written as

min f(z)=c' -z (1)
AT .3 < b,)

where matrix A and vectors ¢ and b represent prob-
lem parameters. Vector x = (x1,...,,) contains
the decision variables (unknowns) whose values need
to be determined in such a way that f(z) is mini-
mized and all the constrains are satisfied. The vari-
ables x;, ¢ = 1,...,n can take binary, integer or
continuous values, i.e., x+ € B x Z x R, where
B ={xp,zr € {0,1}}, Z = {ap, . € Z\ {0,1}},
and R = {zk, zx € R\ Z}.

Many real life problems may be represented in a
MIP form. Several well known examples include ve-
hicle routing problems, scheduling, packing, facility
location, network flow. There is variety of efficient
approaches for solving these problems either exactly
or heuristically. However, real life instances are usu-
ally of very large sizes and the development of new
powerful heuristics is often needed.

3. VINS - The proposed matheuristic

VINS is a generalization of VNDS-MIP matheuris-
tic [5] which defines new patterns for subproblem
generation by fixing and relaxing subsets of problem
variables. First step of the algorithm is to solve the
linear relaxation of MIP. After that it finds the first
feasible solution for MIP. The distances between each
corresponding variable value in the solution of lin-
ear relaxation and the first feasible solution are cal-
culated, and the variables are sorted by these distance
values. Variables which are close to the value in linear
relaxation solution are considered to offer less space
for improvement.

As in VNDS-MIP, neighborhoods are defined in
the space of variable states. A variable state is said
to be fixed if the optimizer is not allowed to change
the value of that variable during the optimization pro-
cess. Otherwise, a variable state is relaxed, meaning
that the optimizer can freely adjust the value of the
variable. The neighborhoods have the following pat-
terns for each iteration of the search:

e N1: a% of the worst variables are released;

230

e N2: variable set is divided into 10 bins and
a/10% worst variables are released within
each bin;

e N3: starting at random position «% variables
are released;

e N4: at 10 random positions, «/10% variables
are released;

e N5: a% of the best variables are released;

e NG6: variable set is divided into 10 bins and
a/10% best variables are released within
each bin;

e N7: a/2% of best and worst variables are
released;

e NB&: within 10 equal bins the same pattern as
in N7 is applied;

e NO: random a% variables are released;

e N10: in 10 equal bins, random «/10%
variables are released.

Neighborhood N1 is in line with the original
VNDS-MIP method described in [S] where the pa-
rameter o was changing from 10 to 100 by an in-
crement of 10. Terms "best" and "worst" variables
here refer to lowest and highest distance of the vari-
able value from the value in linear relaxation solu-
tion, respectively. Parameter « defines the percentage
of variables to be released and used in the search, i.e.
the neighborhood size. The neighborhood change pat-
terns are iterated in round robin fashion. When they
are all explored, the neighborhood size is increased,
and the search is restarted in N1. Whenever an im-
provement is achieved, the new best solution is added
as a constraint on the solution value, and the variables
are resorted according to the distance between values
in current solution and the linear relaxation solution.
The details of the proposed procedure are given as
Algorithm 1.

4. Experimental results

The algorithm is coded in C++ and executed on
a 3.9 GHz quad core Intel i7 4770 CPU with 8 GB of
RAM. As the exact MIP solver CPLEX 11.2 is used.
To assure fair comparison, VNDS-MIP is executed
in the same environment. The parameter o« was tak-
ing values 40%, 60%, 80% and 100%, and the time
limit for each neighborhood size was set respectively
to 200, 400, 1000 and 2100 seconds, giving 1 hour
total execution limit per problem instance.

Table 1 contains the comparison results on barge
container ships routing problem instances. In the first
three columns the problem size (expressed by num-
ber of ports n, total number of variables with num-
ber of binary variables in brackets, and the number of
constraints, respectively) is given. The remaining two

Algorithm 1 VINS
Input: MIP, alphas, time_limits
Solve linear relaxation of M I P to obtain linz.
Calculate z, the first feasible solution for M I P.
bestr «— x.
improvement «— true.
while ¢t < T'lim do
if improvement then
Sort variables according to x — linz.
improvement «— false.
end if
N «— NextNeighborhood
if N = null then
a «— NextAlpha
if alpha = null then
break
end if
N «— N1
end if
Release(N,).
x — MIPSolve(M1IP,time_limit).
improvement «— improved(x)
if improvement then
bestr «— x.
Add objective constraint f(x) < f(bestz).
end if
end while

column pairs contain the best objective function value
and the corresponding running time for VNDS-MIP
and VINS. The values in each cell represent average
results for 5 instances of the same size. The results
presented in Table 1 show that solution quality is the
same for both methods on smaller examples. How-
ever, VINS is superior with respect to running time.
For the largest instances, as well as in total, VINS out-
performed VNDS-MIP with respect to both solution
quality and running time.

The comparison results on miplib3 instances are
presented in Table 2. The instance name is given in
the first column of this table. The next two columns
contain the size of the instance: total number of vari-
ables and number of binary variables in brackets,
and the number of constraints, respectively. The next
two column pairs contain the best objective func-
tion value and the corresponding running time for
VNDS-MIP and VINS. The last two columns show
ranks of VNDS-MIP and VINS, respectively. Rank
of a method is defined as 1 if it produces better so-
lution and 2 otherwise. If the solution quality is the
same, both methods have rank equal to 1.5. As can be
seen from Table 2, VINS performs slightly better then
VNDS-MIP on average.

231

Table 1. Computational results on barge container

ships routing problem instances

number of VNDS-MIP VINS
n var. constr. best.obj. min.time best.obj. min.time
10 352 (110) 398 | -23274.62 12.65 | -23274.62 3.36
15 752 (240) 818 | -17916.31 131.15 | -17916.31 78.75
20 1302 (420) 1388 | -25016.45 3875.02 | -25000.51 861.33
25 | 2002 (650) 2108 | -25247.86 3727.64 | -26663.73 1509.67
av. -22863.82 1936.61 | -23213.80 613.28

5. Conclusion

A new matheuristic VINS for solving large scale
MIPs is designed combining two other approaches
VILS and VNDS-MIP and tested on two types of test
examples. VINS is a general purpose hybrid method
that searches through several neighborhoods differ-
ing with respect to both type and size. Our prelim-
inary experimental study shows that, in most of the
examples, VINS is outperforming previous method
producing high quality solutions in reasonable time.

The further development of VINS should include
parameter tuning, the evaluation of neighborhoods
efficiency, their proper selection and ordering, and
learning how to order the decision variables and re-
duce the search space relying on the availability of
previously generated solutions.

Acknowledgements. This work has been partially
supported by Serbian Ministry of Science, grant Nos.
ON174010, ON174033 and ON171017 and NSERC.

References

[1] E.-G. Talbi. A taxonomy of hybrid metaheuristics. J.
Heur., 8:541-564, 2002.

E.-G. Talbi, ed. Hybrid metaheuristics. Springer, 2013.
M. Fischetti and A. Lodi. Local branching. Mathemat-
ical Programming, 98(2):23-47, 2003.

P. Hansen, N. Mladenovié, and D. UroSevi¢. Variable
neighbourhood search and local branching. Comput.
Oper. Res., 33(10):3034-3045, 2006.

J. Lazi¢, S. Hanafi, N. Mladenovi¢, and D. UroSevi¢.
Variable neighbourhood decomposition search for 0-1
mixed integer programs. Computers and Operations
Research, 37(6):1055-1067, 2010.

S. Mitrovié-Mini¢ and A. P. Punnen. Local search
intensified: Very large-scale variable neighborhood
search for the multi-resource generalized assignment
problem. Discrete Optimization, 6(4):370-377, 2009.
V. Maras, J. Lazi¢, T. Davidovié¢, and N. Mladenovié.
Routing of barge container ships using MIP heuristics.
Applied Soft Computing, 13(8):3515-3528, 2013.

V. Maniezzo, T. Stiitzle, and S. Voss, editors.
Matheuristics: hybridizing metaheuristics and mathe-
matical programming, volume 10. Springer, 2009.

(2]
(3]
[4]

(3]

(6]

(7]

(8]

Table 2. Computational results on miplib3 instances

VNDS-MIP VINS Ranks
inst. no.var. no.constr. best.obj. min.time best.obj. min.time | VNDS-MIP VINS
10teams 2025 (1800) 230 924 25.899 928 6.578 1 2
air03 10757 (10757) 124 340160 2.609 340160 0.703 1.5 1.5
air04 8904 (8904) 823 56137 73.203 56137 12.078 1.5 1.5
air05 7195 (7195) 426 26374 129.516 26374 16.265 1.5 1.5
arki001 1388 (415) 1048 | 7580814.512 297.031 | 7589104.642 13.75 1 2
bell03a 133 (39) 123 878430.316 4.922 878430.316 1.969 L5 1.5
bell5 104 (30) 91 8966406.492 0.469 | 8966406.492 0.156 1.5 1.5
blend2 353 (231) 274 8.077526 1.203 7.598985 0.047 2 1
cap6000 6000 (6000) 2176 -2451377 57.313 -2451239 0.219 1 2
dano3mip 13873 (552) 3202 | 696.6666667 1932.344 | 691.1352941 3341.61 2 1
danoint 521 (56) 664 66.5 1.469 | 65.66666667 1.203 2 1
demulti 548 (75) 290 188194.6 3599.969 188182 0.109 2 1
dsbmip 1937 (160) 1182 | -305.198175 1.406 | -305.198175 0.187 1.5 1.5
egout 141 (55) 98 568.1007 0.078 568.1007 0.094 L5 1.5
enigma 100 (100) 21 0 0.078 0 0 1.5 1.5
fast0507 63009 (63009) 507 174 96.641 174 237.812 L5 1.5
fiber 1298 (1254) 363 405935.18 2.313 405935.18 0.188 1.5 1.5
fixnet6 878 (378) 478 3983 0.75 3983 1.453 L5 1.5
gen 870 (144) 780 | 112313.3627 0.094 | 112313.3627 0.187 1.5 1.5
gesa2 1224 (240) 1392 | 25779856.37 6.969 | 25779856.37 1.954 1.5 1.5
gesa2_o 1224 (384) 1248 | 25779856.35 32.625 | 25780031.43 5.235 1 2
gesa3 1152 (216) 1368 | 27991042.65 15.922 | 27991042.65 2.953 L5 1.5
gesa3_o 1152 (336) 1224 | 27991042.65 4.828 | 27991042.65 0.219 1.5 1.5
at2 188 (24) 29 21166 0.031 21166 0 L5 1.5
harp2 2993 (2993) 112 -73868341 3183.375 -73899770 30.062 2 1
khb05250 1350 (24) 101 106940226 3.672 106940226 0.484 L5 1.5
1152lav 1989 (1989) 97 4722 6.641 4722 0.828 1.5 1.5
Iseu 89 (89) 28 1120 0.703 1120 0.313 L5 1.5
marksharel 62 (50) 6 5 911.025 5 2395.391 1.5 1.5
markshare2 74 (60) 7 14 1649.634 15 2576.063 1 2
mas74 151 (150) 13 | 11801.18573 1135.188 | 11801.18573 215.282 1.5 1.5
mas76 151 (150) 12 | 40005.05414 0.859 | 40005.05414 7.078 1.5 1.5
misc03 160 (159) 96 3360 0.328 3360 0.578 1.5 1.5
misc06 1808 (112) 820 | 12850.86074 0.828 | 12850.86074 0.437 1.5 1.5
misc07 260 (259) 212 2810 3.531 2810 21.828 1.5 1.5
mitre 10724 (10724) 2054 115155 2.845 115155 0.515 1.5 1.5
mkc 5325 (5323) 3411 -558.544 1590.234 -563.846 202.031 2 1
mod008 319 (319) 6 307 0 307 0.031 1.5 1.5
mod010 2655 (2655) 146 6548 0.359 6548 0.25 1.5 1.5
mod011 10975 (96) 4480 | -54558535.01 384.321 | -54558535.01 19.328 1.5 1.5
noswot 128 (75) 182 -41 0.016 -41 1.703 1.5 1.5
nw04 87482 (87482) 36 16862 32.902 16862 7.453 1.5 1.5
p0033 33(33) 16 3089 0.047 3089 0.125 1.5 1.5
p0201 201 (201) 133 7615 0.75 7615 0.203 1.5 1.5
p0282 282 (282) 241 258411 0.703 258411 0.093 1.5 1.5
p0548 548 (548) 176 8691 0.172 8691 0.328 1.5 1.5
p2756 2756 (2756) 755 3124 6.422 3124 0.281 1.5 1.5
pkl 86 (55) 45 11 45.484 | 10.99999995 29.406 2 1
pp08a 240 (64) 136 7350 4.641 7350 0.344 1.5 1.5
pp08aCUTS 240 (64) 246 7350 3.016 7350 0.422 1.5 1.5
qiu 840 (48) 1192 | -132.8731369 2111.469 | -132.8731369 6.203 L5 1.5
qnetl 1541 (1288) 503 | 16029.69268 2938 | 16029.69268 3.36 1.5 1.5
qnetl_o 1541 (1288) 456 | 16029.69268 3.125 | 16029.69268 0.485 L5 1.5
rentacar 9559 (55) 6803 | 30356760.98 3.125 | 30356760.98 0 1.5 1.5
rgn 180 (100) 24 | 82.19999924 0.031 | 82.19999924 0.031 L5 1.5
rout 556 (300) 291 1077.56 117.844 1077.56 22.641 1.5 1.5
setlch 712 (240) 492 54537.75 8.109 54537.75 1.203 L5 1.5
seymour 1372 (1372) 4944 425 89.078 423 2556.313 2 1
stein27 27 (27) 118 18 0 18 0.046 1.5 1.5
steind5 45 (45) 331 30 0.078 30 0.328 1.5 1.5
swath 6805 (6724) 884 471.033123 1326.672 478.027556 428.827 1 2
vpml 378 (168) 234 20 0.172 20 0 1.5 1.5
vpm?2 378 (168) 234 14 0.109 13.75 0.125 2 1
AVERAGE 2113361.622 300.287746 2112999.07 193.26 1.52 1.48

232

