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Sadržaj – U radu se razmatra jedan od mogućih 
načina paralelizacije procedure lokalnog pretraživanja. 
Iako primenljiva na većinu problema kombinatorne 
optimizacije, tehnika je u ovom radu primenjena na 
problem rasporedjivanja u računarstvu, tj. na raspo-
redjivanje zadataka na izvršavanje procesorima u okviru 
nekog  višeprocesorskog sistema. Paralelizacija je 
vršena na višeprocesorskom sistemu sa q+1 identičnih 
proce-sora imajući na umu dve strategije pretraživanja. 
Za prvu od njih dobijeno je skoro linearno ubrzanje, dok 
je kod  druge  paralelizacija uticala na kvalitet rešenja 
uvodjenjem dodatne slučajnosti. 
 
KLJUČNE REČI: LOKALNO PRETRAŽIVANJE, 
STATIČKA RASPODELA, HOMOGENI PROCESORI, 
KOMUNIKACIONO KAŠNJENJE. 
 
Abstract – Parallel neighborhood exploration strategy  
for parallelization of Local Search procedure is 
described. The main application is to Multiprocessor 
Scheduling Problem with Communication Delays 
(MSPCD), but it can  be  applied to other combinatorial 
optimization  problems. The parallelization is performed 
on multiprocessor system containing q+1 identical 
processors. We tested two different search strategies and 
for one of them obtained almost linear speedup. 
 
KEY WORDS: LOCAL SARCH, STATIC SCHEDULING, 
HOMOGENEOUS MULTIPROCESSORS, 
COMMUNICATION DELAYS. 
 
 
1. INTRODUCTION 
 
A significant amount of work has already been done in 
implementation and analysis of various strategies for 
parallelization of different metaheuristics methods (see  
summary papers [2,9]). The general conclusions are: 
metaheuristics are hard for parallelization, several main 

ideas can be recognized, starting from the low level 
parallelization realized by distributing search space 
among processors [6,9], up to the cooperative multi-
thread parallel searches [1]. In this paper we focus on 
parallelization of Local Search procedure which has been 
recognized as the main building block for varius types of 
metaheuristic methods [4,7]. We implemented  the 
parallel neighbourhood exploration strategy [6,9] and 
applied it to Multiprocessor Scheduling Problem with 
Communication Delays (MSPCD). 
 
The paper is organized as follows: in the next section 
combinatorial formulation of MSPCD is given. Section 3 
contains the description of sequential implementation of 
local search procedure for solving given scheduling 
problem. The main ideas for parallelization of described 
local search procedure are given in section 4, 
experimental evaluations are descused in section 5, while 
section 6 concludes the paper. 
 
 
2. PROBLEM DESCRIPTION 
 
The Multiprocessor Scheduling Problem With 
Communication Delays (MSPCD) is as follows: tasks (or 
jobs) have to be executed on several processors; we have 
to find where and when each task will be executed, such 
that the total completion time is minimum. A duration of 
each task is known as well as precedence relations 
among tasks, i.e. what tasks should be completed before 
some other could begin. In addition, if dependent tasks 
are executed on different processors, the data transferring 
time (or communication delay) that are given in advance 
are also considered. 
 
The tasks to be scheduled are represented by a directed 
acyclic graph (DAG) [3,5,8] defined by a tuple G = (M,  
E, C, L) where M = {1, …, n} denotes the set of tasks 



(modules); E = {eij ,  |i, j ∈ M} represents the set of 
communication edges; C = {cij , eij ∈ E} denotes the set 
of edge communication costs; and L = {l1, …, ln} 
represents the set of task computation times (execution 
times, lengths).  The communication cost cij ∈ C denotes 
the amount of data transferred between tasks i and j if 
they are executed on different processors.  If both tasks 
are scheduled to the same processor the communication 
cost equals zero.  The set E defines precedence relation 
between tasks.  A task cannot be executed unless all of 
its predecessors have completed their execution and all 
relevant data is available. Task preemption and 
redundant execution are not allowed. 
 
The multiprocessor architecture  A ={1, 2,…,p} is 
assumed to contain p identical processors with their own 
local memories which communicate by exchanging 
messages through bidirectional links of the same 
capacity.  This architecture is modelled by a distance 
matrix [3]. The element (k, l) of the distance matrix D 
=[dkl]px p is equal to the minimum distance between the 
nodes k and l. Here, the minimum distance is calculated 
as the number of links along the shortest path between 
two nodes.  It is obvious that distance matrix is 
symmetric with zero diagonal elements. 
 
The scheduling of DAG G onto A  consists of determi-
ning the index of the associated processor and starting 
time instant for each of the tasks from the task graph in 
such a way as to minimize some objective function.  The 
usual objective function (that we shall use in this paper 
as well) is completion time of the scheduled task graph 
Tmax (also referred to as makespan, response time or 
schedule length). The starting time of a task i depends on 
the completion times of its predecessors and the amount 
of time needed for transferring the data from the 
processors executing these predecessors to the processor 
that has to execute the task i. Depending on 
multiprocessor architecture the time that is spent for 
communication between tasks i and j can be calculated in 

the following way ,ccrdc klij
kl

ij
⋅⋅=γ where it is 

assumed that task i  will be executed on processor l, task 
j on processor k and ccr  represents the Communication-
to-Computation-Ratio which is defined as the ratio 
between time for transferring the unit amount of data and 
the time spent for performing single computational 
operation. This parameter is used to describe the 
characteristics of multiprocessor system. In message 
passing systems ccr usually has a large value because 
communication links are very slow. For shared-memory 
multiprocessors the communication is faster since it 
consists of writing data from main (electronic) memory 
of one processor into global (also fast) memory and then 
into main memory of another processor. If the tasks are 
scheduled to the same processor, i.e. k=l, the amount of 

communication is equal to zero since dkk=0. 
 
 
3. SEQUENTIAL IMPLEMENTATION OF LOCAL 
SEARCH PROCEDURE 
 
The LS procedure represents systematic search in the 
given neighborhood of an initial solution for the "better" 
solutions, the ones that result with the improvement of 
objective function value. Pseudo-code for this search is 
as follows: 
 
Initialization. x ∈ X; x'' = x. 
 
Repeat: 

1. x = x'';  
2. (∀ x' ∈ N(x))    If f(x') < f(x'')   then x'' = x'. 

until x'' = x. 
 
Here is described exhaustive search of the neighborhood, 
i.e. each neighbor is visited. The LS can be reduced in 
the sense that only some specified part(s) of neigh-
borhood is searched. The other possible reduction is to 
perform First Improvement (FI) search, i.e. to stop the 
search when first better solution is found. If the whole 
neighborhood is visited searching for improvements and 
the best one is accepted, we will call this strategy Best 
Improvement (BI). Since the most consuming part of LS 
procedure is neighborhood exploration, our goal is to 
speed it up by the parallelization. 
 
The sequential Local Search (LS) approach to MSPCD 
as a part of VNS procedure is proposed in [4]. The "two 
step" idea of constructive heuristic methods was explored 
in [3] for the implementation of exhaustive search over 
the whole solution space. Since the precedence 
constraints between tasks, defined by task graph, 
represent the partial order relation, the set of feasible 
permutation of tasks was used in [3] to represent the 
search space. Term feasible permutation is connected 
with the permutation in which order of tasks obeys 
precedence constraints defined by task graph. The same 
solution representation was used in sequential VNS 
implementation proposed in [4]. The solution space S is 
defined as the set of all permutations of tasks. According 
to the precedence relation, not all permutations are 
feasible. Therefore, the search space, the set of feasible 
solutions X ⊆ S is defined as a set of all feasible 
permutations.  
 
Changing the permutations, different list of tasks for 
scheduling are obtained, i.e. different rules for realization 
of first step of constructive heuristic scheduling method 
can be defined. For the calculation of objective function 
value (makespan, schedule length) which is to be 
minimized, we have to perform the second step of some 



constructive heuristic, i.e. to apply some scheduling rule. 
Tasks are taken one by one in order defined by selected 
feasible permutation, each of them is then assigned and 
scheduled to one of the processors. In our 
implementation, the Earliest start (ES) scheduling rule 
[3] is used.  
 
The experiments performed with sequential implemen-
tation of permutation-based LS showed that for sparse 
task graphs, search space (set of feasible permutations) is 
too large to be exploited efficiently.  We try to improve 
the LS procedure by its parallelization. 
 
 
4. PARALELLIZATION OF LOCAL SEARCH 
 
At the beginning of scheduling process, the initial 
solution has to be created. Usually, some efficient 
constructive heuristics are used, but sometimes, this 
solution is generated randomly. After initial solution is 
determined, the next step is its improvement by the LS 
procedure.  
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Fig. 1. Parallelization of LS procedure 
 
The general block-diagram of parallel LS procedure is 
presented on Fig. 1. There are several possible ways of 
parallelizing the LS procedure. Here we will present the 
most natural one. The main idea is to divide search space 
into several parts and distribute these parts among 
processors. Each processor has to perform search process 
only in associated part. In general case, this strategy does 
not change the original sequential algorithm, and it is 
dedicated just to assure the speedup of search procedure. 
This kind of parallelization is realized by performing 
parallel neighborhood exploration (PNE) [6,9] within 
one iteration of LS procedure. Starting from the same 

current solution, each processor is exploring the 
associated part of the neighborhood searching for the 
improvement. From the computational point of view, the 
linear speedup should be expected since these 
computations are independent. Regarding the 
communication issues, all the improved solutions (partial 
local minima) should be exchanged between processors 
at the end of current iteration of neighborhood 
exploration and the best of them is propagated for further 
exploration. 
 
The described PNE falls into synchronous category, 
since the communications are performed in strictly 
defined execution points. It perfectly fits with the block-
diagram shown on Fig. 1. The asynchronous 
implementation can also be considered, but it is not the 
subject of this paper. The concrete implementation of this 
strategy depends on the target multiprocessor 
architecture and we will describe here the message-
passing one, dedicated to the execution on distributed-
memory based multiprocessor systems, such as clusters 
of workstations. 
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Fig. 2. Multiprocessor system for parallel LS execution 

 
The target multiprocessor architecture is assumed to 
contain q+1 identical processors (with their own local 
memories) organized in a sort of master-slave 
architecture as shown on Fig. 2. Master processor is 
assigned communication and synchronization part of 
parallel execution, while slave processors perform only 
the calculation jobs. 
 
At the beginning of the scheduling process, the initial 
solution x0 has to be created. In current implementation 
of sequential VNS the initial solution (initial feasible 
permutation) is determined by the use of CP+ES 
constructive heuristic. Instead of waiting for master to 
determine and broadcast this initial solution, each 
processor creates it and therefore not only savings in 
communication is achieved but also idle time intervals 
are reduced. 



 
Let us consider the 1-Swap neighborhood defined in [4] 
as changing the position of each task within its "feasible 
region", i.e. moving task from its original position to all 
others in such a way that another feasible permutation is 
obtained. The main idea is to divide the n tasks ordered 
in feasible permutation into several parts so that these 
parts can be processed simultaneously, i.e. in parallel 
(Fig. 3). The possible disadvantage can be quite a 
frequent communication, but that has to be verified 
experimentally. 
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Fig. 3. Parallel 1-Swap neighborhood exploration 
 
The search procedure consists of moving tasks in search 
range from their original positions to all other feasible 
ones (the new position of a task can be anywhere in the 
permutation, it is not limited by the search range, see Fig. 
3.). Here, we have to define the search direction 
(FORward or BACKward) [4], although we can allow all 
neighbors of selected task to be searched. We are aware 
of the overlapping in search procedure, but since search 
is performed in parallel we will allow this case too in 
order to search neighborhood more efficiently and 
(possibly) obtain better local minimum. 
 
The number of parts depends on the number of 
processors involved in parallelization of LS procedure. 
We consider two possible cases. The first one is when all 
the processors are engaged in execution of parallel LS 
procedure. In the second case LS is running on slave 
processors, while the master performs only communi-
cation and coordination operations. 
 
For executing LS with q+1 processors in parallel, the 1-
Swap neighborhood is divided among processors: each 
processor has to do exhaustive search over  [n/(q+1)] 
succeeding tasks in the given permutation. The part of 
permutation searched by processor r (r=0,1,…,q is the 
rank (index) of the processor) is in one of the the 
following intervals 
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depending on search strategy (FI or BI). Here  x  
denotes the minimal integer grater than or equal to x. The 
intervals are different for the following reason: the bulk 
of the improvements are found in the first part (first half) 
of the permutation, so we need to allow master to 
complete its search quickly and prepare for receiving the 
results from slaves. On the other hand, if BI strategy is 
implemented the last (ending) part of permutation is 
assigned to master since it is the smaller one in case 
n%(q+1) ≠ 0, i.e. if q+1 does not divide n. In addition the 
update of objective function is quicker when last part of 
permutation is processed since the changed part of 
permutation (which is the only one to be rescheduled [4]) 
is smaller. 
 
We also examined the second case, when processor 0 
does not perform any calculations but since the obtained 
results are worse, we will not discuss this case here. 
 
The described partition of neighborhood did not perform 
well, we noticed significant load imbalance of the 
processors. The load imbalance is the consequence of 
inappropriate distribution of calculations between 
processors. Since the required communications are 
almost the same for all the processors, it follows that they 
are computationally imbalanced. This is because the 
initial part of permutation requires a lot of work in search 
process since most of the permutation is changed and has 
to be rescheduled. In BI case that part is performed by 
the slave with the greatest  rank and its load defines the 
total execution time of parallel LS procedure. The most 
consuming part in FI case is not the first one but the 
second. It is because the greatest probability to achieve 
(first) improvement is in this first part, explored by 
master, and the next processor (rank = 1) still has a lot of 
work with smaller chances to improve current solution. 
Therefore, we had to improve computational load 
balance between the processors by determining 
experimentaly part of the neighborhood to be processed 
by each processor.  
 
In such an implementation, BI LS (denoted by BOB, 
Best Of Bests) is the same as in the sequential case, since 
in both cases all neighbors are visited and best solution is 
chosen. FI LS can produce different local minimum since 
all q(+1) FI solutions for the part of neighborhood 



explored are compared and the one is selected by the 
master. The section rule may be "best of firsts" (BOF) or 
"first of firsts" (FOF) and we implemented both of them. 
 
The synchronous execution of PNE consists of 
performing LS procedure with specified values for 
parameters (FI-BI, FOR-BACK) iteration by iteration 
until no improvement occurs. Each processor explores its 
own part of search space and communicates with the 
master to get the next step instruction. The role of the 
master processor (after exploring a part of search space, 
if it is suppose to) is to collect all solutions from the 
slaves, find the best one (according to the specified rule: 
BOB, BOF, FOF), checks if it is better than current 
minimum and distribute it to the others. If the current 
best solution is not improved, it sends STOP message to 
the others and reports the best found solution to the user. 
 
To minimize the required communication, slave 
processors first send only the "improved" value of the 
objective function. If the improvement is obtained, the  
slave which found that schedule is identified and asked 
to send the corresponding best solution, i.e. the feasible 
permutation of tasks, to the master so that it can be 
broadcasted to all the slaves for the next iteration. 
 
 
5.  EXPERIMENTAL EVALUATION 
 
In this section the experiments we performed with 
different implementations of parallel LS procedure are 
described. The tests are run on SUN Enterprise 10000 
multiprocessor system  where 1-5 processors are used. 
Programs are developed in C programming language and 
MPI communication library is used for the 
communication between processors. The scheduling 
results are presented for 10 task graphs with the number 
of tasks ranging from 50 to 500 with the increment of 50, 
while the edge density is around 30%. Graphs are 
generated randomly as described in [4]. 
 
The results of BI and FI parallel local search in the whole 
neighborhood (in both directions FOR and BACK) with 
up to q+1=5 processors are given in Table 1.  First 
column contains the number of slave processors. In the 
next column is given average over 10 instances of 
random task graphs value of number of iterations. Third 
column of Table 1 contains the average over 10 test 
examples value of scheduling length obtained by parallel 
LS procedure. The CPU times spent by each processor 
are given in the fourth column (containing q+1 values) 
with the computation time of each processor given in 
parentheses below. The last three columns contain total 
workload of the processors, total parallel execution time 
(wall clock time) and the speedup factor respectively.  

 
The sequential execution is presented in the first row of 
each part of the Table 1. It is very useful to have it here 
for the comparisom matter. The rest of the data show the 
following. In the BI search, the results are the same and 
only benefit is in the speedup. As we can see, speedup 
factor is almost linear. The difference between 
computation time (in parentheses) and the total execution 
time shows that the time spent for communication and 
synchronization between processors is not very large, 
meaning that we manage to achieve both of our goals: 
minimizing the communications and maximizing the load 
balance between processors. The data about so called 
wall clock time, the total parallel execution time are 
important for the estimation of CPU time used by 
operating system to handle parallel execution. As we can 
see, this time is usually not significant.  
 
The above discussion does not hold for the case when FI 
search is performed. First of all the results are not the 
same. Moreover, they may be different for different 
(FOF) executions since it is almost impossible to predict 
which processor will complete its computations first and 
report the new starting point for the next iteration. This 
property significantly influences the final result 
introducing randomness into the search which may be 
very useful when LS is incorporated into metaheuristic 
procedures. Moreover, the load balance between 
processors is  again violated, since it may change from 
iteration to iteration. Consequently, the achieved speedup 
is smaller.  
 
We experimented with restricted versions of parallel 
neighborhood exloration (FOR and BACK search) and 
made very similar conclusions. 
 
 
6. CONCLUSION  
 
In this paper we implemented a parallel variant of local 
search procedure for Multiprocessor Scheduling Problem 
with Communication Delays. The implementation is 
based on parallel neighborhood  exploration and tested 
on multiprocessor architecture with relatively small 
number of processors. Two variants of the search are 
used and for each of them results are analysed. Best 
improvement search can be easily parallelized with a 
very good performance. Adding new processors in this 
case should not be the problem. The first improvement 
search seem to be harder for parallelization, it shows 
quite stochastic behaviour. Anyway, that kind of 
behaviour may be very useful during complex searches 
defined by some metaheuristic procedures.

  



  
 

Table 1.  Scheduling results of parallel neighborhood exploration for 10 random task graphs 
 

BI search 
q n. it. fopt CPU time ∑ CPU W time Speedup 
0 4.10 2750.90  646.71 

(646.71) 
646.71 652.09 1.00 

1 4.10 2750.90 348.58      343.10 
(348.55)   (295.95) 

691.67 353.25 1.86 

2 4.10 2750.90  237.80      241.78      237.66 
(203.62)   (241.60)   (179.55) 

717.67 424.11 2.67 

3 4.10 2750.90  182.23      185.66     185.31      184.41 
(131.08)   (185.60)   (155.46)   (118.46) 

744.54 188.55 3.48 

4 4.10 2750.90  145.38      145.35     146.70      145.11     142.24 
(126.84)   (129.39)   (146.22)   (112.85)   (49.58) 

742.79 147.75 4.41 

 
FI search 

q n. it. fopt CPU time ∑ CPU W time Speedup 
0 10.70 2758.80  749.66 

(749.01) 
749.66 773.85 1.00 

1 7.60 2778.20  325.15     325.34 
(220.39)   (212.02) 

650.50 340.29 2.30 

2 6.50 2779.20  284.23      288.69      288.39 
(166.25)   (217.28)   (209.81) 

861.31 297.51 2.60 

3 6.20 2778.20  245.86      245.72     248.79      247.26 
(117.68)   (154.29)   (203.89)   (200.16) 

987.63 254.99 3.01 

4 6.30 2777.90  222.15     222.30     224.74      224.38     225.20 
( 98.27)   ( 83.08)   (155.84)   (166.59)   (187.99) 

1118.77 230.29 3.33 
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