

PARALELIZACIJA LOKALNOG PRETRAŽIVANJA ZA PROBLEME RASPOREDJIVANJA

PARALELLIZATION OF LOCAL SEARCH PROCEDURE FOR MULTIPROCESSOR
SCHEDULING PROBLEMS*

Tatjana Davidovi}

Matematički institut SANU, Beograd, p.f. 367. email:tanjad@mi.sanu.ac.yu
Teodor Gabriel Crainic

Departement management et technologie, Université du Québec à Montréal and
 Centre de recherche sur les transports, Université de Montréal

 email: theo@crt.umontreal.ca

* This research has been supported in part by NSF Serbia. The first author has been supported by grant no. 1583.

Sadržaj – U radu se razmatra jedan od mogućih
načina paralelizacije procedure lokalnog pretraživanja.
Iako primenljiva na većinu problema kombinatorne
optimizacije, tehnika je u ovom radu primenjena na
problem rasporedjivanja u računarstvu, tj. na raspo-
redjivanje zadataka na izvršavanje procesorima u okviru
nekog višeprocesorskog sistema. Paralelizacija je
vršena na višeprocesorskom sistemu sa q+1 identičnih
proce-sora imajući na umu dve strategije pretraživanja.
Za prvu od njih dobijeno je skoro linearno ubrzanje, dok
je kod druge paralelizacija uticala na kvalitet rešenja
uvodjenjem dodatne slučajnosti.

KLJUČNE REČI: LOKALNO PRETRAŽIVANJE,
STATIČKA RASPODELA, HOMOGENI PROCESORI,
KOMUNIKACIONO KAŠNJENJE.

Abstract – Parallel neighborhood exploration strategy
for parallelization of Local Search procedure is
described. The main application is to Multiprocessor
Scheduling Problem with Communication Delays
(MSPCD), but it can be applied to other combinatorial
optimization problems. The parallelization is performed
on multiprocessor system containing q+1 identical
processors. We tested two different search strategies and
for one of them obtained almost linear speedup.

KEY WORDS: LOCAL SARCH, STATIC SCHEDULING,
HOMOGENEOUS MULTIPROCESSORS,
COMMUNICATION DELAYS.

1. INTRODUCTION

A significant amount of work has already been done in
implementation and analysis of various strategies for
parallelization of different metaheuristics methods (see
summary papers [2,9]). The general conclusions are:
metaheuristics are hard for parallelization, several main

ideas can be recognized, starting from the low level
parallelization realized by distributing search space
among processors [6,9], up to the cooperative multi-
thread parallel searches [1]. In this paper we focus on
parallelization of Local Search procedure which has been
recognized as the main building block for varius types of
metaheuristic methods [4,7]. We implemented the
parallel neighbourhood exploration strategy [6,9] and
applied it to Multiprocessor Scheduling Problem with
Communication Delays (MSPCD).

The paper is organized as follows: in the next section
combinatorial formulation of MSPCD is given. Section 3
contains the description of sequential implementation of
local search procedure for solving given scheduling
problem. The main ideas for parallelization of described
local search procedure are given in section 4,
experimental evaluations are descused in section 5, while
section 6 concludes the paper.

2. PROBLEM DESCRIPTION

The Multiprocessor Scheduling Problem With
Communication Delays (MSPCD) is as follows: tasks (or
jobs) have to be executed on several processors; we have
to find where and when each task will be executed, such
that the total completion time is minimum. A duration of
each task is known as well as precedence relations
among tasks, i.e. what tasks should be completed before
some other could begin. In addition, if dependent tasks
are executed on different processors, the data transferring
time (or communication delay) that are given in advance
are also considered.

The tasks to be scheduled are represented by a directed
acyclic graph (DAG) [3,5,8] defined by a tuple G = (M,
E, C, L) where M = {1, …, n} denotes the set of tasks

(modules); E = {eij , |i, j ∈ M} represents the set of
communication edges; C = {cij , eij ∈ E} denotes the set
of edge communication costs; and L = {l1, …, ln}
represents the set of task computation times (execution
times, lengths). The communication cost cij ∈ C denotes
the amount of data transferred between tasks i and j if
they are executed on different processors. If both tasks
are scheduled to the same processor the communication
cost equals zero. The set E defines precedence relation
between tasks. A task cannot be executed unless all of
its predecessors have completed their execution and all
relevant data is available. Task preemption and
redundant execution are not allowed.

The multiprocessor architecture A ={1, 2,…,p} is
assumed to contain p identical processors with their own
local memories which communicate by exchanging
messages through bidirectional links of the same
capacity. This architecture is modelled by a distance
matrix [3]. The element (k, l) of the distance matrix D
=[dkl]px p is equal to the minimum distance between the
nodes k and l. Here, the minimum distance is calculated
as the number of links along the shortest path between
two nodes. It is obvious that distance matrix is
symmetric with zero diagonal elements.

The scheduling of DAG G onto A consists of determi-
ning the index of the associated processor and starting
time instant for each of the tasks from the task graph in
such a way as to minimize some objective function. The
usual objective function (that we shall use in this paper
as well) is completion time of the scheduled task graph
Tmax (also referred to as makespan, response time or
schedule length). The starting time of a task i depends on
the completion times of its predecessors and the amount
of time needed for transferring the data from the
processors executing these predecessors to the processor
that has to execute the task i. Depending on
multiprocessor architecture the time that is spent for
communication between tasks i and j can be calculated in

the following way ,ccrdc klij
kl

ij
⋅⋅=γ where it is

assumed that task i will be executed on processor l, task
j on processor k and ccr represents the Communication-
to-Computation-Ratio which is defined as the ratio
between time for transferring the unit amount of data and
the time spent for performing single computational
operation. This parameter is used to describe the
characteristics of multiprocessor system. In message
passing systems ccr usually has a large value because
communication links are very slow. For shared-memory
multiprocessors the communication is faster since it
consists of writing data from main (electronic) memory
of one processor into global (also fast) memory and then
into main memory of another processor. If the tasks are
scheduled to the same processor, i.e. k=l, the amount of

communication is equal to zero since dkk=0.

3. SEQUENTIAL IMPLEMENTATION OF LOCAL
SEARCH PROCEDURE

The LS procedure represents systematic search in the
given neighborhood of an initial solution for the "better"
solutions, the ones that result with the improvement of
objective function value. Pseudo-code for this search is
as follows:

Initialization. x ∈ X; x'' = x.

Repeat:

1. x = x'';
2. (∀ x' ∈ N(x)) If f(x') < f(x'') then x'' = x'.

until x'' = x.

Here is described exhaustive search of the neighborhood,
i.e. each neighbor is visited. The LS can be reduced in
the sense that only some specified part(s) of neigh-
borhood is searched. The other possible reduction is to
perform First Improvement (FI) search, i.e. to stop the
search when first better solution is found. If the whole
neighborhood is visited searching for improvements and
the best one is accepted, we will call this strategy Best
Improvement (BI). Since the most consuming part of LS
procedure is neighborhood exploration, our goal is to
speed it up by the parallelization.

The sequential Local Search (LS) approach to MSPCD
as a part of VNS procedure is proposed in [4]. The "two
step" idea of constructive heuristic methods was explored
in [3] for the implementation of exhaustive search over
the whole solution space. Since the precedence
constraints between tasks, defined by task graph,
represent the partial order relation, the set of feasible
permutation of tasks was used in [3] to represent the
search space. Term feasible permutation is connected
with the permutation in which order of tasks obeys
precedence constraints defined by task graph. The same
solution representation was used in sequential VNS
implementation proposed in [4]. The solution space S is
defined as the set of all permutations of tasks. According
to the precedence relation, not all permutations are
feasible. Therefore, the search space, the set of feasible
solutions X ⊆ S is defined as a set of all feasible
permutations.

Changing the permutations, different list of tasks for
scheduling are obtained, i.e. different rules for realization
of first step of constructive heuristic scheduling method
can be defined. For the calculation of objective function
value (makespan, schedule length) which is to be
minimized, we have to perform the second step of some

constructive heuristic, i.e. to apply some scheduling rule.
Tasks are taken one by one in order defined by selected
feasible permutation, each of them is then assigned and
scheduled to one of the processors. In our
implementation, the Earliest start (ES) scheduling rule
[3] is used.

The experiments performed with sequential implemen-
tation of permutation-based LS showed that for sparse
task graphs, search space (set of feasible permutations) is
too large to be exploited efficiently. We try to improve
the LS procedure by its parallelization.

4. PARALELLIZATION OF LOCAL SEARCH

At the beginning of scheduling process, the initial
solution has to be created. Usually, some efficient
constructive heuristics are used, but sometimes, this
solution is generated randomly. After initial solution is
determined, the next step is its improvement by the LS
procedure.

INIT

EXIT

LS LS LS1 2 ... q +(1)

x

x

min

0

Fig. 1. Parallelization of LS procedure

The general block-diagram of parallel LS procedure is
presented on Fig. 1. There are several possible ways of
parallelizing the LS procedure. Here we will present the
most natural one. The main idea is to divide search space
into several parts and distribute these parts among
processors. Each processor has to perform search process
only in associated part. In general case, this strategy does
not change the original sequential algorithm, and it is
dedicated just to assure the speedup of search procedure.
This kind of parallelization is realized by performing
parallel neighborhood exploration (PNE) [6,9] within
one iteration of LS procedure. Starting from the same

current solution, each processor is exploring the
associated part of the neighborhood searching for the
improvement. From the computational point of view, the
linear speedup should be expected since these
computations are independent. Regarding the
communication issues, all the improved solutions (partial
local minima) should be exchanged between processors
at the end of current iteration of neighborhood
exploration and the best of them is propagated for further
exploration.

The described PNE falls into synchronous category,
since the communications are performed in strictly
defined execution points. It perfectly fits with the block-
diagram shown on Fig. 1. The asynchronous
implementation can also be considered, but it is not the
subject of this paper. The concrete implementation of this
strategy depends on the target multiprocessor
architecture and we will describe here the message-
passing one, dedicated to the execution on distributed-
memory based multiprocessor systems, such as clusters
of workstations.

PROC

PROC

PROC

PROC

PROC PROC

PROC

1

2

0

4

3 ...

...

q-1

q

Fig. 2. Multiprocessor system for parallel LS execution

The target multiprocessor architecture is assumed to
contain q+1 identical processors (with their own local
memories) organized in a sort of master-slave
architecture as shown on Fig. 2. Master processor is
assigned communication and synchronization part of
parallel execution, while slave processors perform only
the calculation jobs.

At the beginning of the scheduling process, the initial
solution x0 has to be created. In current implementation
of sequential VNS the initial solution (initial feasible
permutation) is determined by the use of CP+ES
constructive heuristic. Instead of waiting for master to
determine and broadcast this initial solution, each
processor creates it and therefore not only savings in
communication is achieved but also idle time intervals
are reduced.

Let us consider the 1-Swap neighborhood defined in [4]
as changing the position of each task within its "feasible
region", i.e. moving task from its original position to all
others in such a way that another feasible permutation is
obtained. The main idea is to divide the n tasks ordered
in feasible permutation into several parts so that these
parts can be processed simultaneously, i.e. in parallel
(Fig. 3). The possible disadvantage can be quite a
frequent communication, but that has to be verified
experimentally.

x

nFORBACK

n
q+1

0 . . .
......

Fig. 3. Parallel 1-Swap neighborhood exploration

The search procedure consists of moving tasks in search
range from their original positions to all other feasible
ones (the new position of a task can be anywhere in the
permutation, it is not limited by the search range, see Fig.
3.). Here, we have to define the search direction
(FORward or BACKward) [4], although we can allow all
neighbors of selected task to be searched. We are aware
of the overlapping in search procedure, but since search
is performed in parallel we will allow this case too in
order to search neighborhood more efficiently and
(possibly) obtain better local minimum.

The number of parts depends on the number of
processors involved in parallelization of LS procedure.
We consider two possible cases. The first one is when all
the processors are engaged in execution of parallel LS
procedure. In the second case LS is running on slave
processors, while the master performs only communi-
cation and coordination operations.

For executing LS with q+1 processors in parallel, the 1-
Swap neighborhood is divided among processors: each
processor has to do exhaustive search over [n/(q+1)]
succeeding tasks in the given permutation. The part of
permutation searched by processor r (r=0,1,…,q is the
rank (index) of the processor) is in one of the the
following intervals

















+

++







+ 1

*)1(,1
1

*
q

nr
q

nr

,
1

*)1(,1
1

*)(















+

+−+







+

−
q

nrq
q

nrq

depending on search strategy (FI or BI). Here  x
denotes the minimal integer grater than or equal to x. The
intervals are different for the following reason: the bulk
of the improvements are found in the first part (first half)
of the permutation, so we need to allow master to
complete its search quickly and prepare for receiving the
results from slaves. On the other hand, if BI strategy is
implemented the last (ending) part of permutation is
assigned to master since it is the smaller one in case
n%(q+1) ≠ 0, i.e. if q+1 does not divide n. In addition the
update of objective function is quicker when last part of
permutation is processed since the changed part of
permutation (which is the only one to be rescheduled [4])
is smaller.

We also examined the second case, when processor 0
does not perform any calculations but since the obtained
results are worse, we will not discuss this case here.

The described partition of neighborhood did not perform
well, we noticed significant load imbalance of the
processors. The load imbalance is the consequence of
inappropriate distribution of calculations between
processors. Since the required communications are
almost the same for all the processors, it follows that they
are computationally imbalanced. This is because the
initial part of permutation requires a lot of work in search
process since most of the permutation is changed and has
to be rescheduled. In BI case that part is performed by
the slave with the greatest rank and its load defines the
total execution time of parallel LS procedure. The most
consuming part in FI case is not the first one but the
second. It is because the greatest probability to achieve
(first) improvement is in this first part, explored by
master, and the next processor (rank = 1) still has a lot of
work with smaller chances to improve current solution.
Therefore, we had to improve computational load
balance between the processors by determining
experimentaly part of the neighborhood to be processed
by each processor.

In such an implementation, BI LS (denoted by BOB,
Best Of Bests) is the same as in the sequential case, since
in both cases all neighbors are visited and best solution is
chosen. FI LS can produce different local minimum since
all q(+1) FI solutions for the part of neighborhood

explored are compared and the one is selected by the
master. The section rule may be "best of firsts" (BOF) or
"first of firsts" (FOF) and we implemented both of them.

The synchronous execution of PNE consists of
performing LS procedure with specified values for
parameters (FI-BI, FOR-BACK) iteration by iteration
until no improvement occurs. Each processor explores its
own part of search space and communicates with the
master to get the next step instruction. The role of the
master processor (after exploring a part of search space,
if it is suppose to) is to collect all solutions from the
slaves, find the best one (according to the specified rule:
BOB, BOF, FOF), checks if it is better than current
minimum and distribute it to the others. If the current
best solution is not improved, it sends STOP message to
the others and reports the best found solution to the user.

To minimize the required communication, slave
processors first send only the "improved" value of the
objective function. If the improvement is obtained, the
slave which found that schedule is identified and asked
to send the corresponding best solution, i.e. the feasible
permutation of tasks, to the master so that it can be
broadcasted to all the slaves for the next iteration.

5. EXPERIMENTAL EVALUATION

In this section the experiments we performed with
different implementations of parallel LS procedure are
described. The tests are run on SUN Enterprise 10000
multiprocessor system where 1-5 processors are used.
Programs are developed in C programming language and
MPI communication library is used for the
communication between processors. The scheduling
results are presented for 10 task graphs with the number
of tasks ranging from 50 to 500 with the increment of 50,
while the edge density is around 30%. Graphs are
generated randomly as described in [4].

The results of BI and FI parallel local search in the whole
neighborhood (in both directions FOR and BACK) with
up to q+1=5 processors are given in Table 1. First
column contains the number of slave processors. In the
next column is given average over 10 instances of
random task graphs value of number of iterations. Third
column of Table 1 contains the average over 10 test
examples value of scheduling length obtained by parallel
LS procedure. The CPU times spent by each processor
are given in the fourth column (containing q+1 values)
with the computation time of each processor given in
parentheses below. The last three columns contain total
workload of the processors, total parallel execution time
(wall clock time) and the speedup factor respectively.

The sequential execution is presented in the first row of
each part of the Table 1. It is very useful to have it here
for the comparisom matter. The rest of the data show the
following. In the BI search, the results are the same and
only benefit is in the speedup. As we can see, speedup
factor is almost linear. The difference between
computation time (in parentheses) and the total execution
time shows that the time spent for communication and
synchronization between processors is not very large,
meaning that we manage to achieve both of our goals:
minimizing the communications and maximizing the load
balance between processors. The data about so called
wall clock time, the total parallel execution time are
important for the estimation of CPU time used by
operating system to handle parallel execution. As we can
see, this time is usually not significant.

The above discussion does not hold for the case when FI
search is performed. First of all the results are not the
same. Moreover, they may be different for different
(FOF) executions since it is almost impossible to predict
which processor will complete its computations first and
report the new starting point for the next iteration. This
property significantly influences the final result
introducing randomness into the search which may be
very useful when LS is incorporated into metaheuristic
procedures. Moreover, the load balance between
processors is again violated, since it may change from
iteration to iteration. Consequently, the achieved speedup
is smaller.

We experimented with restricted versions of parallel
neighborhood exloration (FOR and BACK search) and
made very similar conclusions.

6. CONCLUSION

In this paper we implemented a parallel variant of local
search procedure for Multiprocessor Scheduling Problem
with Communication Delays. The implementation is
based on parallel neighborhood exploration and tested
on multiprocessor architecture with relatively small
number of processors. Two variants of the search are
used and for each of them results are analysed. Best
improvement search can be easily parallelized with a
very good performance. Adding new processors in this
case should not be the problem. The first improvement
search seem to be harder for parallelization, it shows
quite stochastic behaviour. Anyway, that kind of
behaviour may be very useful during complex searches
defined by some metaheuristic procedures.

Table 1. Scheduling results of parallel neighborhood exploration for 10 random task graphs

BI search
q n. it. fopt CPU time ∑ CPU W time Speedup
0 4.10 2750.90 646.71

(646.71)
646.71 652.09 1.00

1 4.10 2750.90 348.58 343.10
(348.55) (295.95)

691.67 353.25 1.86

2 4.10 2750.90 237.80 241.78 237.66
(203.62) (241.60) (179.55)

717.67 424.11 2.67

3 4.10 2750.90 182.23 185.66 185.31 184.41
(131.08) (185.60) (155.46) (118.46)

744.54 188.55 3.48

4 4.10 2750.90 145.38 145.35 146.70 145.11 142.24
(126.84) (129.39) (146.22) (112.85) (49.58)

742.79 147.75 4.41

FI search

q n. it. fopt CPU time ∑ CPU W time Speedup
0 10.70 2758.80 749.66

(749.01)
749.66 773.85 1.00

1 7.60 2778.20 325.15 325.34
(220.39) (212.02)

650.50 340.29 2.30

2 6.50 2779.20 284.23 288.69 288.39
(166.25) (217.28) (209.81)

861.31 297.51 2.60

3 6.20 2778.20 245.86 245.72 248.79 247.26
(117.68) (154.29) (203.89) (200.16)

987.63 254.99 3.01

4 6.30 2777.90 222.15 222.30 224.74 224.38 225.20
(98.27) (83.08) (155.84) (166.59) (187.99)

1118.77 230.29 3.33

REFERENCES

[1] T.G. Crainic. Parallel computation, co-operation, tabu
search. In C. Rego and B. Alidaee, editors, Adaptive
Memory and Evolution: Tabu Search and Scatter Search.
Kluwer Academic Publishers, 2002.

 [2] T. G. Crainic and M. Toulouse. Parallel strategies for
meta-heuristics. In F. Glover and G. Kochenberger,
editors, State-of-the-art Handbook in Metaheuristics.
Kluwer Academic Publishers, 2003.

[3] T. Davidović. Exaustive list--scheduling heuristic for
dense task graphs. YUJOR, 10(1):123--136, 2000.

[4] T. Davidović, P. Hansen, and N. Mladenović.
Variable neighborhood search for multiprocessor
scheduling problem with communication delays. In Proc.
MIC'2001, 4th Metaheuristic International Conference,
pages 737--741, Porto, Portugal, 2001.

 [5] Y.-K. Kwok and I. Ahmad. Efficient scheduling of
arbitrary task graphs to multiprocessors using a parallel
genetic algorithm. J. Parallel and Distributed
Computing, 47:58--77, 1997.

[6] F. García-López, B. Melián-Batista, J. A. Moreno-
Pérez, and J. M. Moreno-Vega. The parallel variable
neighborhood search for the p-median problem. Journal
of heuristics, 8(3):375--388, May 2002.

[7] S. C. Porto and C. C. Ribeiro. Parallel tabu search
message-passing synchronous strategies for task
scheduling under precedence constraints. J. Heuristics,
1(2):207--223, 1996.

[8] G. C. Sih and E. A. Lee. A compile-time scheduling
heuristic for interconnection-constrained heterogeneous
processor architectures. IEEE Trans. on Parallel and
Distributed Systems, 4(2):175--187, February 1993.

[9] M. G. A. Verhoeven and E. H. L. Aarts. Parallel local
search. Journal of heuristics, 1:43--65, 1995.

