
Yugoslav Journal of Operations Research
 10 (2000), Number 1, 123-136

EXHAUSTIVE LIST-SCHEDULING HEURISTIC FOR DENSEEXHAUSTIVE LIST-SCHEDULING HEURISTIC FOR DENSEEXHAUSTIVE LIST-SCHEDULING HEURISTIC FOR DENSEEXHAUSTIVE LIST-SCHEDULING HEURISTIC FOR DENSE
TASK GRAPHSTASK GRAPHSTASK GRAPHSTASK GRAPHS****

Tatjana DAVIDOVI]
Mathematical Institute - SANU

11000 Belgrade, Yugoslavia

Abstract:Abstract:Abstract:Abstract: The multiprocessor scheduling problem has usually been "solved" by using
heuristic methods. A large number of such heuristics can be found in the literature, but
none of them can efficiently be applied to the problem in its most general form. The
efficiency of any scheduling heuristic depends on both the task graph structure and the
multiprocessor system architecture. List-scheduling heuristics are the most common
ones in use. They are based on the definition of the task priority list determining the
order in which tasks will be scheduled (assigned to one of the processors). A task can be
assigned to a processor in many different ways, but variations of the earliest start
heuristics are the most frequent in use. In this paper a scheduling strategy based on
the use of multiple task priority lists combined with several assignment heuristics is
suggested in order to find optimal (near-optimal at the worst) solutions for a large class
of arbitrary task graphs. It is shown that performing an exhaustive search overall
feasible task priority lists is not too expensive for scheduling dense task graphs.

Keywords:Keywords:Keywords:Keywords: Scheduling, multiprocessors, precedence graphs, communication delay.

1. INTRODUCTION

The distribution of tasks to be executed on an arbitrary multiprocessor
system, often referred to as the scheduling or task allocation problem, will be discussed
in this paper. The quality of the schedule is highly affected by the precedence
constraints among the tasks as well as the number of processors, the topology of the
communication network and the communication mechanism itself [12]. Here, it is
assumed that the precedence constraints among tasks are defined by a directed acyclic
graph called a dependency graph or task graph [5, 13]. The multiprocessor topology
(architecture) is described by a symmetric distance matrix [1, 3].

* This research was supported by NSF Serbia, grant no. 04M02C.

124 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

The precedence relation between tasks constrains the order in which tasks can
be executed to assure correctness of the parallel execution of the program. The perfor-
mance of the parallel program can be radically different on various architectures,
usually representing a consequence of communication and synchronization between
tasks. The communication costs should not be ignored in the scheduling process: they
could be higher than the computational costs.

The scheduling of parallel program modules (tasks) among processors is an
NP-complete problem in its most general form [15]. A lot of papers considering this
problem have appeared in recent years [1, 3-9, 11, 13, 14, 16, 17]. To avoid this
problem's complexity the authors have considered restricted forms of the problem [5,
16] and/or have introduced some heuristics to find certain satisfactory suboptimal
solutions [4, 6, 9, 10, 11, 13]. The restrictions are related to the selection of some fixed
multiprocessor architecture [4, 6, 11, 17], the introduction of some constraints on the
task graph [4, 5, 9, 16] or the assumption of constraints regarding communication
delays [5, 13, 16]. Most of the heuristic approaches rely on the definition and
optimization of objective functions [4, 9-11, 13] but metaheuristics such as genetic
algorithms [7] and simulated anealing [14] have recently been applied, too.

The main problem with heuristics is that any particular heuristic cannot be
efficiently applied to all problems. For example, if the heuristic is designed to assure
load balancing of the processors constituting the multiprocessor system [11], and if
there are too many processors, a lot of execution time will be spent on transferring data
between processors, which would result in prolongation of the total execution time. For
this reason, many researchers are working on the development of new heuristics to be
efficiently applied on a larger class of problems.

The scheduling process is usually performed in two steps [3-5, 9, 11, 13]: first
the task to be scheduled is selected and then the most appropriate processor for the
given task is determined. This means that the tasks are ordered into some priority list
and then scheduled (assigned to the processors) one by one according to that list.
Heuristics based on these two steps are called list-scheduling heuristics. The order of
tasks within the priority list can be defined in several ways: the length of the Critical

Path1 [13, 17], the amount of required communications [5, 11, 16], the number of
successors, the task execution time, the task mobility [3, 4, 6], etc. Some of these
strategies obey precedence constraints between tasks [4, 5, 13, 16] and the others do
not (precedence constraints are considered only in the second scheduling step). The
assignment of tasks to the processors (second scheduling step) can also be performed by
using different criteria: the earliest start of the task [4, 13], minimum communications
[5, 11, 16], minimal prolongation of task graph execution time [3, 6], etc.

In this paper, it is proposed to use more than one priority list to schedule the
task graph, as well as to apply more than one assignment strategy forcing minimization
of both execution and communication times. A number of so-called "feasible lists" is

1 Here CP is defined as the largest sum of execution times till an endtask.

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 125

generated and scheduled in two different ways to be executed on the given
multiprocessor system. The best obtained schedule is taken for the final one. A "feasible
list" of tasks represents any permutation of tasks which obeys the precedence
constraints defined by the task graph. The scheduling process proposed in this paper
follows the precedence relations between tasks. The number of all the feasible lists
depends reversely upon the number of task graph edges (except in some special cases as
descussed in Section 3). Having this in mind it is proposed to examine all feasible lists
for dense task graphs and to take the best obtained schedule for the final one. In the
case of scheduling sparse task graphs, it is suggested to perform the scheduling process
(generation of feasible lists and assignment of tasks directed by these lists) within a
given time limit or until some other criterion is satisfied. For assigning tasks to
processors the well known "earliest start" heuristic is used, as well as declustering
method experimentally proven to be very efficient for scheduling sparse task graphs.

The paper is organised as follows: the definition of the scheduling problem is
given in Section 2, Section 3 contains a description of the proposed scheduling method,
examples and experimental results are given in Section 4, while Section 5 concludes
this paper.

2 PROBLEM STATEMENT

Scheduling parallel programs to be executed on multiprocessor systems may
be static or dynamic [12]. Static scheduling means a priori assignment of tasks to the
processors (this assignment does not change during parallel program execution).
Dynamic scheduling [2] represents a run-time assignment and it is performed when the
task graph structure changes during the scheduling process. In this paper static
scheduling is considered. Starting from both the program which is to be parallelized
and a given multiprocessor architecture, the problem is to determine where and when
each program module (task) will be executed.

The tasks to be scheduled are represented by a directed acyclic graph (DAG)
defined by a 4-tuple),,,(LCETG = where },,{ nttT !1= represents the set of tasks;

},|{ TtteE jiij ∈= represents the set of communication edges; }|{ EecC ijij ∈=

represents the set of edge communication costs; and },,{ nllL !1= represents the set

of task computation times (lengths). The communication cost Ccij ∈ defines the

amount of data transferred between tasks it and jt if they are executed on different

processors. If both tasks are scheduled to the same processor, the communication cost
is zero. The set E defines precedence relations between tasks. A particular task cannot
be executed unless all of its predecessors complete their own execution and all relevant
data are available. Task preemption and redundant execution are not allowed.

It is assumed that the multiprocessor architecture M contains p identical
processors with their own local memories. The processors, exchanging messages,
communicate through bidirectional links. This architecture can be modeled by a

126 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

processor graph [10] or by a distance matrix [1]. The nodes of a processor graph
represent processors, while links between processors are modelled by the graph edges.
The element),(ji of the distance matrix ppijdD ×=][is equal to the minimal distance

between the nodes i and j. Here, the minimal distance is equal to the number of links
along the shortest path between two nodes. It is easy to see that the distance matrix is
symmetric having zero diagonal elements. It is also assumed that the processors are
connected with links of the same capacity.

The scheduling of DAG G to be executed on M consists of the determination of
the index of the associated processor, and the calculation of the starting time for each
of the tasks from the task graph, to minimize some objective function. The usual
objective function can be the execution time of the scheduled task graph (makespan,
schedule length, used in this paper as well) [13], but it can also be the load imbalance of
the processors [11] or the total communication cost [9].

3. SCHEDULING HEURISTIC

3.1. Description of the scheduling heuristic3.1. Description of the scheduling heuristic3.1. Description of the scheduling heuristic3.1. Description of the scheduling heuristic

The precedence relation defines a partial order between tasks, i.e. there are
some independent tasks which can be executed simultaneously, meaning that these
tasks can be scheduled in an arbitrary order. Thus, the first step in the list-scheduling
method is to determine priorities for all the tasks for obtaining a total order between
them. The obtained list of tasks defines the order for task scheduling. A task is ready
for scheduling if all of its predecessors have already been scheduled.

The next step in the scheduling process usually is to select the most
appropriate processor on which the given ready task will be executed. All the necessary
communication routines must be added, too. Finally, the task starting time is
calculated. This structure of the scheduling heuristic can be found in [4, 9, 10, 13].
Several recently developed heuristics [3, 5, 6, 9, 11] have not followed precedence
constraints in the process of generating task priority lists. This caused an increase in
computational complexity because within the assignment part of the scheduling
process, task starting times are not known at once.

The heuristic proposed in this paper is also based on the list-scheduling
method. It takes into consideration all lists obeying the precedence constraints among
tasks (from now on they will be referred to as feasible lists). The set of such lists is a
subset of all the permutation of tasks, and the number of lists in that subset depends
on the task graph structure (number of tasks and number of communication edges):
while the task graph complexity increases, the number of feasible lists decreases. Yet, it
is obvious (see next subsection) that the number of feasible lists cannot be polynomially
limited w.r.t. the number of tasks and/or edges in a task graph, in general.

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 127

The i-th feasible list can be described as a permutation
),,,,,,(iniliki tttt !!!1 of all the tasks where ilik tt ,,! means that either tasks ikt

and ilt are independent or there is a path from ikt to ilt with all edges in E.

The procedure for finding all feasible lists (permutations of tasks) is recursive
(Fig. 1) and can be described as follows.

i = 0;
IRT = list of initially ready tasks;
while)(0/≠IRT {

task = next(IRT);

fea_perm[i] = task;

NRT = IRT \ { task} + succ(task)

all_fea(NRT, i + 1);

}

Figure 1:Figure 1:Figure 1:Figure 1: Procedure for generation of all feasible lists of tasks

Tasks with no predecessors are included in the list of initially ready tasks
(IRT). The tasks are enumerated to define order between them. A recursive procedure
(all_fea), for finding all feasible permutations with task (task ∈ IRT) as their first
element, is called for each initially ready task. Within this procedure the ordered list of
new ready tasks (NRT) is generated by including all the remaining ready tasks

}){\(taskIRT as well as the new ones which are becoming ready because all of their

predecessors are already included in the feasible list2. Having NRT empty, all_fea calls
the assignment procedure to schedule tasks to the processors.

In this paper it is suggested to use two assignment procedures, but there are
no restrictions to use any other heuristics based on the list scheduling method with
priority lists designed to obey precedence constraints between tasks. The result of the
assignment procedure (schedule length) is compared with the current minimum, and if
it is better (smaller) it is saved as the new minimum (together with the corresponding
schedule, defined by the index of the associated processor and the starting time for each
of the tasks).

The first assignment procedure used in this paper is the well known Earliest
Start (ES) method: given ready task (t) is scheduled as early as possible. The starting
time of task t is calculated for all the processors, depending upon the communication
times with predecessors scheduled on other processors and the current ocupancy of a
given processor. Minimum starting time defines the processor j on which task t will be
executed. Although proven to be very efficient and widely used, ES heuristics can give

2 Here, the definition of ready task is changed because the feasible list generation and assignment
process are separated.

128 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

unsatisfactory solutions [8], sometimes even with execution times longer than the
serial execution time of a given task graph, as is the case in the following example.

it 1 2 3 4 5

il 2 3 5 8 4

a)

feasible lists schedule
length

1 1 2 3 4 5 23
2 1 2 4 3 5 23
3 1 3 2 4 5 23
4 2 1 3 4 5 23
5 2 1 4 3 5 23
6 2 4 1 3 5 23

b)

Figure 2:Figure 2:Figure 2:Figure 2: a) Task graph example; b) Corresponding ES schedules

The task graph presented on Fig. 2a cannot be optimally scheduled on two
connected processors by the use of ES heuristic. Six feasible lists yield to the same
schedule length 23 (Fig. 2b), while the sequential execution time of this task graph
equals 22. This is because of the large amount of required communication and the lack
of tasks for filling the idle interval. One of the ES obtained schedules and the optimal
ones are given as follows:

Heuristic schedule Optimal schedules

1P : 12 37 1P : 12 1P : 12 37 9416 520

2P : 23 411 20523 2P : 23 411 316 520 2P : 23

where the back task index represents the ending time of a given task, while the front
one (if any) denotes the starting time of a given task (if it is different from the ending
time of the preceeding task).

As can be seen from the above example, sometimes it is better to delay task
execution than to wait for its results.

This indicates that more than one heuristic should be used to assure the
efficient scheduling of similar task graph examples. Since none of the tested heuristics
[5, 9-11, 13] gave the optimal solution for the example on Fig. 2, in this paper a variant
of the (de)clustering method which will be called DC is used. An initial serial schedule
defined by a feasible list, obtained by assigning all the tasks to one of the processors

)(1P , has to be improved by moving tasks one by one to another processor (following

the task order defined by that feasible list). Each task t in the feasible list is scheduled
to all the remaining processors and finally moved to another processor jP so that the

total execution time of the entire task graph is maximally reduced. When task t is
moved to some other processor iP the new starting times for all the remaining tasks in

the feasible list have to be calculated: there is a free space left on 1P but new

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 129

communications between 1P and iP have to be added. If no improvement is made

(total execution time does not decrease if t is moved to any of the remaining
processors), task t is being returned to the first processor. The task graph given on Fig.
2 can be optimally scheduled by using the DC assignment strategy. For example, the
second given optimal schedule can be obtained starting from the permutation 21345
and just moving task 2 to processor 2P .

A comparison of these two assignment strategies is given in Section 4.

3.2. Complexity of the proposed heuristic3.2. Complexity of the proposed heuristic3.2. Complexity of the proposed heuristic3.2. Complexity of the proposed heuristic

The complexity of the second step of the scheduling heuristic proposed in this

paper is)(pnO 2 for the ES assignment heuristic and)(pnO 4 if DC is used. This is
because the starting time of each task))((nO on every processor))((pO has to be
calculated having in mind where the task predecessors have been scheduled ()(nO at
the worst). While using DC, the new starting times for the remaining tasks in the

feasible list have to be calculated, too))((2nO . Henceforth, the entire heuristic
complexity depends on how many times this second step is performed, i.e. on the
number of feasible lists of tasks.

a) b)

Figure 3:Figure 3:Figure 3:Figure 3: a) Sparse task graph b) Modified task graph

To illustrate how the number of feasible lists depends on task graph
complexity (number of communication edges), let us consider the following example
(Fig. 3a).

The task graph contains n = 12 nodes (tasks) and e = 12 edges (e = | E|). The
number of feasible lists equals fea = 36130. The density of this task graph ρ = 18.18%.
Table 1 shows how the number of feasible lists decreases while adding new
communication edges to the task graph on Fig. 3a. When the number of communication
edges is set to 34 (ρ = 51.51%) only eight feasible lists of tasks will remain. The
modified task graph is presented on Fig. 3b.

130 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

Table 1:Table 1:Table 1:Table 1: Number of feasible lists depending on task graph density

e 12 13 15 16 18 19 21 23 25 28 30 31 32 34

fea 36130 32198 19042 5426 4026 1524 1068 704 616 280 112 56 28 8

Fig. 4 presents a special case example to illustrate that the dependency of the
number of feasible lists on the number of task graph edges cannot be expressed by a
simple formula. All the task graphs from that figure contain the same number of nodes
and edges, yet the number of feasible lists is quite different.

Figure 4:Figure 4:Figure 4:Figure 4: Task graphs representing special cases

Since the number of feasible lists is too large for sparse task graphs, the
process of generating of all the feasible lists can be limited by some stopping criterion
(execution time of the scheduling process, percentage of improvement made, etc.).
Some examples of scheduling results, obtained within a given time limit, are presented
in the next section.

Several cut rules are used to reduce computational complexity. Any partial
schedule longer than the current minimum is not for further consideration. Only
neighbor processors and those containing predecessors [6] are considered. In addition,
any moment the obtained schedule length is equal to the length of the critical path, the
scheduling process is stopped because the optimal schedule has been found.

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 131

4. EXAMPLES AND EXPERIMENTAL RESULTS

An illustrative example of a task graph is given in Fig. 5 where it is assumed
that the multiprocessor system contains two identical processors (according to the task
graph structure it is pointless to use more than two processors).

it 1 2 3 4 5 6 7 8 9

il 60 30 15 40 15 30 35 50 40

Figure 5:Figure 5:Figure 5:Figure 5: An example of a task graph

The task graph contains 9 tasks with non-uniform execution and
communication times. The length of the Critical Path equals 250 representing the
minimal value for the length of the optimal schedule. The scheduling results are
presented in Table 2. The total number of feasible lists equals 35, and all the schedules
obtained using both assignment heuristics are listed in Table 2. The minimal schedule
length obtained equals 250 and there are 22 possible optimal solutions when ES is
applied, and only 6 if the DC assignment strategy is used. It can be seen from Table 2
that if the priority list is not properly defined, unsatisfactory solutions will be obtained
(about 13% worse than the optimal one for ES and 18% for DC). On the contrary, if the
task priority is defined as the largest sum of execution times till an endtask (see 7th row
in Table 2) and ES is used in the second scheduling step, the optimal schedule will be

obtained within)(pnO 2 time.

The proposed scheduling process was tested on random task graphs with non-
uniform distribution for both execution times and communication costs. Task graph
density varied from 40% to 80%. The obtained schedules were compared with other
heuristics [5, 9-11, 13]. For all tested task graphs the DLS heuristic proposed in [13] is
performed better than the other ones. For that reason, comparision results are only
given for schedules obtained by DLS and the scheduling heuristic proposed in this
paper. Some illustrative scheduling results are summarized in Table 3.

132 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

Table 2:Table 2:Table 2:Table 2: Feasible schedules for the task graph given in Fig. 5

feasible lists ES DC

1 1 2 3 4 5 6 7 8 9 250 270

2 1 2 3 4 5 7 6 8 9 250 294

3 1 2 3 4 5 7 8 6 9 250 262

4 1 2 3 4 6 5 7 8 9 250 263

5 1 2 3 4 6 7 5 8 9 250 257

6 1 2 3 4 7 5 6 8 9 250 251

7 1 2 3 4 7 5 8 6 9 250 273

8 1 2 3 4 7 6 5 8 9 250 274

9 l 2 3 6 4 5 7 8 9 250 278

10 1 2 3 6 4 7 5 8 9 250 257

11 1 2 3 6 7 4 5 8 9 250 281

12 1 2 3 7 4 5 6 8 9 250 264

13 1 2 3 7 4 5 8 6 9 250 297

14 1 2 3 7 4 6 5 8 9 250 258

15 1 2 3 7 6 4 5 8 9 250 286

16 1 2 6 3 4 5 7 8 9 250 265

17 1 2 6 3 4 7 5 8 9 250 263

18 1 2 6 3 7 4 5 8 9 250 258

19 1 2 6 7 3 4 5 8 9 257 250

20 1 2 7 3 4 5 6 8 9 250 265

21 1 2 7 3 4 5 8 6 9 250 262

22 1 2 7 3 4 6 5 8 9 250 257

23 1 2 7 3 6 4 5 8 9 250 260

24 1 2 7 6 3 4 5 8 9 259 250

25 1 6 2 3 4 5 7 8 9 258 256

26 1 6 2 3 4 7 5 8 9 258 257

27 1 6 2 3 7 4 5 8 9 258 258

28 1 6 2 7 3 4 5 8 9 258 250

29 1 6 7 2 3 4 5 8 9 280 250

30 1 7 2 3 4 5 6 8 9 258 256

31 1 7 2 3 4 5 8 6 9 258 297

32 1 7 2 3 4 6 5 8 9 258 257

33 1 7 2 3 6 4 5 8 9 258 260

34 1 7 2 6 3 4 5 8 9 258 250

35 1 7 6 2 3 4 5 8 9 283 250

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 133

Table 3:Table 3:Table 3:Table 3: Random task graph scheduling results

schedule CPU time [sec]
N ρ p DLS ES DC ES DC
20 80 2 338 325 325 0.02 0.1
20 70 2 312 292 292 0.03 0.22
20 60 2 280 271 265 0.28 0.23
20 50 2 289 265 249 0.10 1.07
20 40 2 213 197 191 1837.82 (≈0.5h) 1047.82
20 80 4 338 325 325 0.02 0.17
20 70 4 312 292 292 0.05 0.3
20 60 4 292 272 255 0.49 4.34
20 50 4 288 271 248 0.25 1.93
20 40 4 201 197 191 3594.87 (< 1h) 2079.79
50 80 2 732 725 727 0.64 9.02
50 70 2 765 747 759 6.28 26.98
50 60 2 798 762 768 4623.30 (< 1.25h) 158268.42
50 50 2 650 618 * 64789.56 (≈18h) *
50 80 4 732 725 727 1.33 13.95
50 70 4 465 747 759 12.08 47.80
50 60 4 798 760 768 9404.43 (≈2.61h) 281988.4
50 50 4 650 618 ** 130642.49 (< 37h) **
100 80 2 1658 1612 1640 8848.09 (≈2.45h) 129663.20
100 70 2 1621 1568 * 82769.24 (≈23h) *
100 80 4 1658 1612 ** 18104.36 (≈5h) **
100 70 4 1629 1572 ** 162022.87 (< 45h) **

* - the results are missing because long execution time is required;

** - it is pointless to use four processors in these examples.

The first two columns describe the task graph structure (n represents the
number of tasks and ρ denotes the density of graph edges). The number of processors
within multiprocessor system p is given in the third column (p = 2 means a
multiprocessor system with two connected processors, while p = 4 denotes a 2-
dimensional hypercube). Schedule lengths obtained using DLS, ES, and DC heuristics
are presented in the next three columns respectively, while the last two columns
contain CPU time spent by ES and DC heuristics, respectively. CPU time needed for
DLS heuristic execution is polynomial (related to the number of nodes in the task

graph and the number of processors -)(pnO 3), and it can be neglected. The values of
CPU time are given for a Pentium PRO microprocessor with the Linux operating
system. Judging by this table, we can conclude that good schedules for dense task
graphs can be obtained in a reasonably short time. The large density of the tested task
graphs is the reason for using such a small number of processors (2, 4). If a lot of
processors are used, the required intensive data transfer between tasks, scheduled to be

134 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

executed on different processors, would prolong the total execution time of the task
graph. Comparing rows 3 and 8, as well as rows 4 and 9 from Table 3, it can be seen
that a multiprocessor system with only two processors executes the task graph
scheduled by the ES heuristic faster than the 2-dimensional hypercube. The DC
heuristic is designed to avoid to some extent such diversifications of tasks among the
processors. As can be seen from the Table 3 the proposed exhaustive search overall
feasible permutations of tasks ensures that obtained schedule is better than DLS
result, but with sacrifice of the polynomial computational complexity.

Table 4:Table 4:Table 4:Table 4: Time limited scheduling results

CPU=40 sec CPU=l0 min CPU=1h

n ρ p ES DC ES DC ES DC

20 40 2 197 191 197 191 197 191

20 30 2 213 215 204 209 204 205

50 50 2 630 657 630 657 630 657

50 40 2 734 730 734 730 730 721

50 30 2 539 506 514 501 509 475

100 50 2 1674 1647 1670 1647 1652 1647

100 40 2 1512 1534 1512 1534 1507 1525

100 30 2 1205 1312 1205 1294 1196 1292

To avoid computational complexity problem in sparse task graph scheduling,
these two heuristics are compared within a given CPU time limit. The obtained
comparison results are given in Table 4. As it can be seen from Tables 3 and 4, the use
of different assignment strategies can significantly improve scheduling results. This
improvement is evident even if the execution time of the scheduling process is limited.

Beside these two assignment heuristics (ES and DC), any other known list-
scheduling heuristic with priority lists designed to obey percedence constraints ([13, 17]
for example), or some new ones, can be used in order to improve the final scheduling
result: minimization of the total execution time of a given task graph. The procedure
for generating and scheduling feasible lists can easily be parallelized in order to speed
up its execution. It is also possible to define some local search procedure based on
examining feasible lists of tasks, in order to direct search for minimal schedule length.
A parallel genetic search algorithm, where members of the population are represented
as feasible lists of tasks, has already been developed [7].

The description of the class of all the task graphs that can be scheduled
optimally using the heuristic proposed in this paper does not follow straightforward.
Detailed analysis is needed to find the conditions that a certain task graph should
satisfy, assuring that its optimal schedule is defined by one of the feasible lists.

T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs 135

5. CONCLUSION AND FUTURE WORK

An exhaustive list-scheduling heuristic for multiprocessor task scheduling has
been proposed. The heuristic has been based on the modification of a well known list-
scheduling method. All lists of tasks obeying precedence constraints have been
determined, a schedule has been performed for each list using two assignment
heuristics, and the best schedule has been selected as the final one. The complexity of
the proposed heuristic depends on the task graph structure, and this complexity
decreases while graph density increases within the same dimension, i.e. number of
tasks. It has been experimentally proven that an exhaustive search overall feasible lists
of tasks was not too expensive for dense task graphs with number of tasks not greater
than 100, while for sparse ones it has been recommended to use a time (or some other
criterion) limited scheduling process. The optimality of the obtained schedule cannot be
guaranteed in the general case.

The non-polynomial computational complexity of the proposed scheduling
heuristic as well as the problem of obtaining optimal solutions direct further
investigations: a) to parallelization of the scheduling process, b) to developing local
search procedures based on examining feasible permutations, and c) to searching for
conditions that task graphs should satisfy in order to be scheduled optimally by this
exhaustive list-scheduling procedure.

REFERENCES

[1] Davidovi}, T., "An efficient multiprocessor task scheduling", Proceedings of Yugoslav
Symposium on Operations Research, Herceg-Novi, 1998. (in Serbian).

[2] Dertouzos, M.L., and Mok, A.K., "Multiprocessor on-line scheduling of hard-real-time tasks",
IEEE Trans. on Software Engineering, 15 (12) (1989) 1497-1506.

[3] Djordjevi}, G., and To{i}, M., "A compile-time scheduling heuristic for multiprocessor
architectures", The Computer Journal, 39 (8) (1996) 663-674.

[4] Kir}anski, N., Davidovi}, T., and Vukobratovi}, M., "A contribution to parallelization of
symbolic robot models", Robotica, 13 (1995) 411-421.

[5] Krishnamoorthy, V., and Efe, K., "Task scheduling with and without communication delays:
A unified approach", European Journal of Operational Research, 89 (1996) 366-379.

[6] Kwok, Y.-K., and Ahmad, I., "Dynamic critical path scheduling: An effective technique for
allocating task graphs to multiprocessors", IEEE Trans. on Parallel and Distributed Systems,
7 (5) (1996) 506-521.

[7] Kwok, Y.-K., and Ahmad, I., "Efficient scheduling of arbitrary task graphs to multiprocessors
using a parallel genetic algorithm", J. Parallel and Distributed Computing, 47 (1997) 58-77.

[8] Kwok, Y.-K., and Ahmad, I., "Fastest: A practical low-complexity algorithm for compile-time
assignment of parallel programs to multiprocessors", IEEE Trans. on Parallel and
Distributed Systems, 10 (2) (1999) 147-159.

[9] Malloy, B.A., Lloyd, E.L., and Soffa, M.L., "Scheduling DAG's for asynchronous mul-
tiprocessor execution", IEEE Trans. on Parallel and Distributed Systems, 5 (5) (1994) 498-
508.

[10] Manoharan, S., and Thanisch, P., "Assigning dependency graphs onto processor networks",
Parallel Computing, 17 (1991) 63-73.

136 T. Davidovi} / Exhaustive List-Scheduling Heuristic for Dense Task Graphs

[11] Sarje, A.K., and Sagar, G., "Heuristic model for task allocation in distributed computer
systems", lEE Proceedings-E, 138 (5) (1991) 313-318.

[12] Sarkar, V., Partitioning and Scheduling Parallel Programs for Multiprocessors, The M.I.T
Press, Cambridge, MA, 1989.

[13] Sih, G.C., and Lee, E.A., "A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures", IEEE Trans. on Parallel and Distributed Systems, 4
(2) (1993) 175-187.

[14] Sofianopoulou, S., "Assignment of distributed processing software: A comparative study",
Yugoslav Journal of Operations Research, 7 (2) (1997) 247-255.

[15] Ullman, J.D., "NP-complete scheduling problems", J. Comput. Syst. Sci., 10 (3) (1975) 384-
393.

[16] Varvarigou, T.A., Roychowdhury, V.P., Kailath, T., and Lawler, E., "Scheduling in and out
forests in the presence of communication delays", IEEE Trans. on Parallel and Distributed
Systems, 7 (10) (1996) 1065-1074.

[17] Yang, T., and Gerasioulis, A., "Dsc: Scheduling parallel tasks on an unbounded number of
processors".

