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Abstract

A sequent system L for the conjunction-implication fragment of intuitionistic propositional
logic is introduced. Sequents of L are of the form A ⊢ B, where A and B are formulae, i.e.
sequences of formulae with exactly one member. With a modification of Gentzen’s procedure
a cut elimination theorem for L is proved. Some categorial consequences of this result are
pointed out.

1 Introduction

The work on this note was inspired by the paper of Kelly and MacLane [1971] where the cut
elimination procedure was used to prove two facts connected with symmetric monoidal closed
categories, namely the naturality of its canonical transformations and the property of coherence.
The authors were inspired by Lambek (see [1968]) who was the first who has used a cut-elimination
technique in category theory. However, we stay here in the logical framework and try to clarify
the process of preparation of a logical system for further categorial purposes.

1.1 System L
The sequent system L for the conjunction-implication fragment of intuitionistic propositional logic
is introduced as follows. Formulae of the logic are built from an infinite set of propositional letters
and the constant ⊤, by the logical connectives ∧ and →. The set of all formulae is denoted by
F . Sequents of L are of the form A ⊢ B for A and B in F . We call A in A ⊢ B the antecedent,
and B the consequent of the sequent. In order to introduce the rules of inference of L we need
the following auxiliary notion of ∧-context, which corresponds to the notion of (poly)functor in
categories. A ∧-context is defined inductively as follows:

1◦ The symbol 2 is a ∧-context.

2◦ If F is a ∧-context and A ∈ F , then (F ∧A) and (A ∧ F ) are ∧-contexts.

3◦ If F and G are ∧-contexts, then (F ∧G) is a ∧-context.

For a ∧-context F we say that it is a ∧1-context if the symbol 2 occurs in F exactly once. For F
a ∧-context and A ∈ F , we obtain F (A) by substituting A for 2 in F , e.g. if F ≡ (B ∧ 2) ∧ C,
then F (A) = (B ∧A) ∧ C.

The axioms of L are
aA : A ⊢ A, for every A ∈ F ,
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The structural rules of L are

(β←F )
F (A ∧ (B ∧ C)) ⊢ D

F ((A ∧B) ∧ C) ⊢ D
(β→F )

F ((A ∧B) ∧ C) ⊢ D

F (A ∧ (B ∧ C)) ⊢ D

(γF )
F (A ∧B) ⊢ C

F (B ∧A) ⊢ C

(ωF )
F (A ∧A) ⊢ B

F (A) ⊢ B
(θAF )

F (⊤) ⊢ B

F (A) ⊢ B

(τF )
F (A) ⊢ B

F (A ∧ ⊤) ⊢ B
(τ ′F )

F (A ∧ ⊤) ⊢ B

F (A) ⊢ B

(µG)
A ⊢ B G(B) ⊢ C

G(A) ⊢ C
,

where F is a ∧1 context and G is a ∧ context.

The rules for connectives are

(∧)
A ⊢ C B ⊢ D

A ∧B ⊢ C ∧D

(∗)
A ∧B ⊢ C

B ⊢ A → C
(△)

A ⊢ B C ∧D ⊢ E

(A ∧ (B → C)) ∧D ⊢ E

A proof of a sequent A ⊢ B in L is a binary tree with sequents in its nodes, such that A ⊢ B is in
the root, axioms are in the leaves and consecutive nodes are connected by some of the inference
rules above.

What are the differences between L and the corresponding fragment of Gentzen’s system LJ
(see [1935])? In L we have just one meta-logical symbol (⊢) in the sequents and we omit Gentzen’s
commas in the antecedents, whose role is now covered by the logical connective ∧. Also, we can’t
have empty either the antecedent or the consequent of a sequent in L. The logical constant ⊤
serves to fill gaps in antecedents. These discrepancies between L and LJ arise because in L we
want antecedents and consequents of sequents to be of the same sort (namely members of F) and
this enables us to look at an L sequent as an arrow with the source being the antecedent and the
target the consequent of the sequent.

Also, the rule (∧) is a rule of simultaneous introduction of the connective ∧ on the both sides
of a sequent: there is no a counterpart for this rule in LJ . This difference is not categorially
motivated. We believe that L completely separates structural rules from the rules for connectives.
On the other hand, the LJ rules &-IS and &-IA (see 1.22. of [1935]) have hidden interchanges,
contractions and thinnings.

Since we prove the cut-elimination theorem through elimination of mix, as Gentzen did too, we
have postulated mix rule (µ) as primitive. However this mix is something different from Gentzen’s
mix. It is liberal in the sense that the ∧-context G in (µG) needn’t to capture all factors B (see
the definition below) as arguments in G(B). The formula B may also be used in Step 2◦ of the
construction of the ∧-context G, i.e. mix needn’t to “swallow” all the occurrences of B in G(B).
Also, there are no categorial reasons to prefer cut to such a mix. In both cases, we don’t have
categorial composition of arrows corresponding to both premises of the rule, but a more involved
composition of the right premise with an image of the left premise under the functor corresponding
to a ∧-context. The only difference is that in the case of cut this is always a ∧1-context.
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An advantage of L is that its proofs can be easily coded. For example the proof

p ⊢ p

q ⊢ q

q ∧ ⊤ ⊢ q

(p ∧ (p → q)) ∧ ⊤ ⊢ q

p ∧ (p → q) ⊢ q

is coded by
τ ′2(ap△τ2aq)

This fact helps when we want to postulate equalities that should hold between the proofs of L.
For the proof of our main result we need the following notions of degree and rank. The degree of

a formula is the number of logical connectives in it. However, because of the categorially motivated
elimination of the comma, the symbol ∧ plays a double role and in order to define rank, we define
as follows a set of factors of A, for every A ∈ F :

1◦ A is a factor of A,

2◦ if A is of the form A1 ∧A2 then every factor of A1 or A2 is a factor of A.

Now, we introduce (in the style of Došen) an auxiliary indexing of consequents and factors of
antecedents in a mixless proof of L which will help us in defining the rank of an occurrence of
a formula in such a proof. First we index all the consequents and all the factors of antecedents
of axioms by 1 and inductively proceed as follows. In all the structural rules and the rule (△)
the index of the consequent in the conclusion is increased by 1. In (∧) and (∗) the index of the
consequent in the conclusion is 1. Every factor of the antecedent preserved by a rule has the
index increased by 1, and all the factors introduced or modified by the rule (take care that we
always speak about occurrences of formulae and not just about formulae) have index 1 in the
conclusion. In (ωF ) the occurrence of A in the conclusion is indexed by the maximum of indices
of distinguished A’s in the premise, increased by 1. In the example of the proof given above this
indexing looks like

p1 ⊢ p1

q1 ⊢ q1

(q2 ∧ ⊤1)1 ⊢ q2

((p2 ∧ (p → q)1)1 ∧ ⊤2)1 ⊢ q3

(p3 ∧ (p → q)2)2 ⊢ q4

Then the rank of an occurrence of a formula in a proof is given by its index.

2 Cut-elimination theorem and consequences

Our main result is the following.

Theorem Every proof in L can be transformed into a proof of the same root-sequent with no
applications of the rule (µ).

Proof: As in the standard cut-elimination procedure it is enough to consider a proof whose last
rule is (µ) and there is no more applications of (µ) in the proof. So let our proof be of the form

π1

A ⊢ B

π2

G(B) ⊢ C

G(A) ⊢ C

with π1 and π2 mixless. Then we define the degree of this proof as the degree of B and the rank
of this proof as the sum of the left rank, i.e. the rank of the occurrence of B in the left premise of
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(µ), in the subproof π1, and the right rank, i.e. the maximum of all ranks of distinguished factors
B in the right premise of (µ) in the subproof π2. Then we prove our theorem by induction on the
lexicographically ordered pairs ⟨d, r⟩ for the degree d and the rank r of the proof.

1. r = 2

The following situations should be considered: 1.1. π1 or π2 are axioms; 1.2. π1 ends with (∧);
1.3.1. π1 ends with (∗) and π2 ends with (△); 1.3.2. π1 ends with (∗) and π2 ends with (θB). We
illustrate here just Case 1.2.

Suppose our proof is of the form

π′1

A1 ⊢ B1

π′′1

A2 ⊢ B2

A1 ∧A2 ⊢ B1 ∧B2

∧
π2

G(B1 ∧B2) ⊢ C

G(A1 ∧A2) ⊢ C
µ

Then this proof is transformed into the proof

π′1

A1 ⊢ B1

π′′1

A2 ⊢ B2

π2

G(B1 ∧B2) ⊢ C

G(B1 ∧A2) ⊢ C
µ

G(A1 ∧A2) ⊢ C
µ

where both applications of (µ) have lower degree.

2. r > 2

The following situations should be considered: 2.1. π2 ends with a structural rule; 2.2. π2 ends
with (∧); 2.3. π2 ends with (∗); 2.4. π2 ends with (△); 2.5. π1 ends with a structural rule; 2.6.
π1 ends with (△). Cases 2.1. - 2.4. are considered under the assumption that the right rank is
greater than 1, while 2.5. and 2.6. are connected with the assumption that the left rank is greater
than 1. Case 2.1. includes a lot of subcases and we illustrate one of them here.

Suppose our proof is of the form

π1

A ⊢ B

π2

G1(B) ⊢ C

G(B) ⊢ C
β→

G(A) ⊢ C
µ

where G is obtained from G1 by substituting H ∧2 for a subcontext (H ∧B1)∧ (B2 ∧B3) of G1,
and H is a ∧-context and B ≡ B1 ∧ (B2 ∧B3). We call this new box of G the principal box. Then
this proof is transformed into the proof

π1

A ⊢ B

π1

A ⊢ B

π2

G1(B) ⊢ C

G1(A) ⊢ C
µ

G2(B) ⊢ C
β→

G(A) ⊢ C
µ

where G2 is obtained from G by substituting A for all boxes except the principal one which re-
mains the unique box in G2. Then the upper application of (µ) has its rank decreased by one and
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the right rank of the lower application of (µ) is 1. 2

It is possible to check that all the reduction steps of our cut-elimination procedure are covered
by the equalities of cartesian closed categories which can be naturally defined in the language of L.
These equations are sufficient for cut elimination, but they need not all be necessary. This is an
argument for the justification of these categories. However, the main consequence of our Theorem
is another proof of the result from [1992], which claims that all canonical transformations from
cartesian closed categories are natural in the extended sense. The fact that all proofs of L can be
reduced to a cut-free form, directly eliminates all obstacles in the way of naturality. This result
was originally proved by the apparatus of natural deduction, and this is an alternative, sequent
system, approach.
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