
Cartesian Isomorphisms are Symmetric Monoidal:

A Justification of Linear Logic

Kosta Došen Zoran Petrić

Abstract

It is proved that all the isomorphisms in the cartesian category freely generated by a set of
objects (i.e. a graph without arrows) can be written in terms of arrows from the symmetric
monoidal category freely generated by the same set of objects. This proof yields an algorithm
for deciding whether an arrow in this free cartesian category is an isomorphism.

Introduction

We believe that a logic should be completely determined by its assumptions concerning structural

rules. Assumptions concerning logical constants are secondary, because they should be invariable

when one passes from one logic to another.

This point of view, which one may also reach on a priori grounds (see [D. 1989]), is corroborated

by what one finds in the area of substructural logics–namely, logics with restricted structural rules,

like intuitionistic, relevant and linear logic (see [D. & Schroeder-Heister eds. 1993]). To justify

a substructural logic one should first of all find a good reason for the choice of structural rules.

Assumptions concerning logical constants will not differ from those one could make in classical

logic. What may happen only is that classical connectives split into several nonequivalent variants.

One finds this already in intuitionistic logic, where A→B and ¬(A∧¬B) cease to be equivalent.

All the assumptions for connectives and quantifiers of linear logic may be made in classical

logic, too. Only the notorious split between so-called “multiplicative” and “additive” connectives

will disappear. The assumptions for the modal operators of linear logic (called “exponentials”)

are also common: when they are added to a classical base of structural rules, they produce just

the modal logic S4.

From this point of view, a justification of linear logic should consist primarily in finding reasons

for the rejection of the structural rules of contraction and thinning. The literature on linear logic

looks usually for these reasons in applications envisaged in computer science.

Our ambition is more modest. We find that there may be other reasons, of a technical nature

and internal to logic, which may also serve to justify the rejection of contraction and thinning. We

want to show that if among structural rules one wants to keep only those that replace collections of

premises by isomorphic collections of premises, one should reject exactly contraction and thinning.

Our result is about the category Cart, the cartesian category freely generated by a set of

objects (i.e. a graph without arrows), whose arrows correspond to deductions in intuitionistic

or classical conjuctive logic, and the category SyMon, the symmetric monoidal category freely

generated by the same set of objects, whose arrows correspond to deductions in linear product

logic. We talk here about ordinary, single-conclusion, deductions. Intuitionistic and classical

conjunctive logics have identical deductions of this sort, and so do intuitionistic and classical

variants of linear product logic.

We formulate cartesian categories in a nonstandard manner, so that arrows corresponding to

structural principles (or to combinators) are primitive. (We have used a similar nonstandard

formulation of cartesian categories for other purposes in [D. & P. 1996].) The categories Cart

1



and SyMon are syntactic categories (built up from syntactical material), whose arrows are the

equivalence classes of arrow-terms. We prove that every isomorphism of Cart can be represented

by a term of a SyMon arrow.

This result is not unexpected, once the problem has been posed. However, the proof we

shall present requires some effort. Our direct, proof-theoretical, approach has the advantage of

exposing a technique of contraction and thinning elimination. It seems worth knowing that one

may sometimes eliminate other structural rules besides cut. Another advantage of our proof is that

it makes precise Gentzen’s notion of a cluster (in German Bund), which is sometimes important in

sequent systems. Gentzen used it in [1938] for his second consistency proof of formal arithmetic,

and Maehara used it in [1954] for the first proof-theoretical demonstration of the embeddability

of intuitionistic logic into the modal logic S4. However, in the context of these systems it is rather

tricky to define clusters quite rigorously, whereas in categories a rigorous definition can be achieved

with less trouble: we do it below, and call the resulting concept progeny.

So our proof, independently of the importance of the result proved, may perhaps also serve to

improve on the arsenal of proof-theoretical techniques. This is the reason why we present it in a

rather detailed form.

We said already that our axiomatization of cartesian categories is not standard: besides projec-

tions, it does not have a pairing operation on arrows as primitive, but it extends the axiomatization

of symmetric monoidal categories with the diagonal natural transformation. We introduced the

appropriate coherence conditions, in particular what we call the octagonal equation, in [D. & P.

1996], but these matters seem to be unknown, and we produce them here again.

Let us immediately dispel a possible misunderstanding of the import of our result. It may

seem that we are demonstrating something only about the product fragment of linear logic, and

this fragment may then be considered too restricted to be of interest. As a matter of fact, we are

not demonstrating anything about any connective at all. Rather, as we explained above, we are

demonstrating something about the structural basis of linear logic.

Isomorphisms between formulae, which are the objects of our categories, are interesting from a

logical point of view. Two formulae are isomorphic when it is possible to find deductions leading

from one to the other that when composed reduce to the trivial deduction from A to A (these

reductions are represented in categories by identity of arrows). That the formulae A and A′ are

isomorphic is equivalent to the assertion that the deductions involving A, either as premise or as

conclusion, can be extended to deductions where A is replaced by A′, the deductions involving A

being in one-one correspondence with the deductions involving A′. Isomorphism is an equivalence

relation stronger than the usual mutual implication. So, for example, A∧B is isomorphic to B∧A
in intuitionistic logic, while A∧A only implies and is implied by A, but is not isomorphic to it. We

surmise that isomorphic formulae may be taken to stand for the same proposition. That means

reducing identity of propositions to identity of deductions.

Conjunction in intuitionistic or classical logic and product in linear logic serve to join premises

in deductions into a single proposition. Our result may then be interpreted as saying that if among

structural rules we keep only those that shall not replace the proposition into which the premises

are joined by a different proposition, then we end up with linear logic. This is not so much a

result about the connectives of conjunction and product, but rather a result about the underlying

structural base of intuitionistic and classical logic on the one hand, and linear logic on the other.

In the first two sections of the paper we give our nonstandard axiomatization of the cartesian

category Cart, taking care to separate in the second section principles concerning the terminal

object. By rejecting these principles we obtain an axiomatization of the category Cart−, which

is the cartesian category without terminal object freely generated by our set of objects. As a

part of the axiomatization of Cart we obtain the axiomatization of the symmetric monoidal

category SyMon. By rejecting the same principles that lead from Cart− to Cart, we obtain an

axiomatization of the category SyMon−, which is the symmetric monoidal category without unit

object freely generated by our set of objects.

2



In the third section we prove the theorem that the isomorphisms of Cart are expressible in

SyMon-terms. The same theorem holds if we replace Cart by Cart− and SyMon by SyMon−.

The essential ingredient of the proof is an algorithm that transforms every Cart arrow-term ex-

pressing an isomorphism into a SyMon arrow-term equal to the initial Cart arrow-term. In that

algorithm we find for every contraction a corresponding thinning, which can then be permuted so

that one follows immediately the other. In that position, they can be replaced by a trivial deduc-

tion from A to A. The difficulty consists in defining precisely what it means that a contraction

corresponds to a thinning, and in checking, as in a cut-elimination procedure, that thinning can

be permuted with other structural rules until it reaches a corresponding contraction with which

it gets eliminated. As a by-product of our proof we obtain a procedure for deciding whether an

arrow of Cart is an isomorphism. (This is a different matter from deciding whether two objects

of Cart are isomorphic, a procedure for which may be inferred from [Soloviev 1981] and [Bruce,

Di Cosmo & Longo 1992].)

In [Di Cosmo 1995] one can find a number of references to matters related to the topic of this

paper. This book is concerned with application in theoretical computer science.

1. The Categories Cart− and SyMon−

In this section we give a construction of the free cartesian category without terminal object,

generated by a set of propositional letters, i.e. a graph without arrows whose vertices are these

letters. This category is the image of this set under the left adjoint of the forgetful functor from

the category of cartesian categories without terminal object into the category of graphs.

The objects of the category Cart− are formulae built up from a set of propositional letters

(whose cardinality is not important to us here) with the help of a binary connective ·, called

product. (Usually, · is written × in cartesian categories and ⊗ in symmetric monoidal categories;

we have chosen a neutral notation.) For propositional letters, which we shall sometimes call

simply letters, we use the schemata p, q, r, ..., possibly with indices, and for formulae the schemata

A,B,C, ..., possibly with indices.

The expression f : A ⊢ B means that f is an arrow from A to B. (We write ⊢ instead of the

more usual → for reasons given in the introduction of [D. & P. 1996].) The category Cart− has

the following primitive arrows, for every formula A, B and C:

1A : A⊢A
−→
bA,B,C : A·(B·C)⊢(A·B)·C, ←−

bA,B,C : (A·B)·C⊢A·(B·C)

cA,B : A·B⊢B·A
−→
k A,B : A·B⊢B,

←−
k A,B : A·B⊢A

wA : A⊢A·A
The arrows of Cart− are built from the primitive arrows with the help of the binary operations

on arrows of composition and product:

f : A ⊢ B g : B ⊢ C

gf : A ⊢ C

f : A ⊢ B g : C ⊢ D

f · g : A · C ⊢ B ·D
(Note that composition is a partial operation, while product is total.) The expression f in

f : A ⊢ B is called an arrow-term, or simply term. For terms we use the schematic letters

f, g, h, ..., possibly with indices. The terms of Cart−, defined recursively as the arrows, are called

Cart−-terms. Here is a table relating our primitive arrow-terms with structural principles and

combinators:

3



primitive arrow-term structural principle combinator

1A identity I

−→
bA,B,C ,

←−
bA,B,C association B

cA,B permutation C

−→
k A,B ,

←−
k A,B thinning K

wA contraction W

The category Cart− is obtained by postulating the following equations between Cart−-terms:

categorial equations

(cat1) For f : A⊢B, 1Bf = f , f1A = f .

(cat2) For f : A⊢B, g : B⊢C and h : C⊢D, h(gf) = (hg)f .

product equations

(·) For f1 : A1⊢B1, g1 : B1⊢C1, f2 : A2⊢B2 and g2 : B2⊢C2,

(g1f1)·(g2f2) = (g1·g2)(f1·f2).
(·1) 1A·1B = 1A·B

b-equations

(b) For f : A⊢D, g : B⊢E and h : C⊢F ,

((f ·g)·h)−→b A,B,C =
−→
bD,E,F (f ·(g·h)).

(bb)
−→
bA,B,C

←−
b A,B,C = 1(A·B)·C ,

←−
bA,B,C

−→
b A,B,C = 1A·(B·C)

(b5) (
−→
bA,B,C ·1D)

−→
b A,B·C,D(1A·

−→
bB,C,D)

←−
bA,B,C·D =

−→
bA·B,C,D

c-equations

(c) For f : A⊢C and g : B⊢D, (g·f)cA,B = cC,D(f ·g).
(cc) cB,AcA,B = 1A·B
(bc6)

←−
b C,A,B(cA,C ·1B)

−→
bA,C,B(1A·cB,C)

←−
bA,B,C = cA·B,C

k-equations

(k) For f : A⊢C and g : B⊢D, g
−→
k A,B =

−→
k C,D(f ·g),

f
←−
k A,B =

←−
k C,D(f ·g).

(bk) (
←−
k A,B ·1C)

−→
bA,B,C = 1A·

−→
k B,C

(ck)
−→
k B,AcA,B =

←−
k A,B

w-equations

(w) For f : A⊢B, (f ·f)wA = wBf .

(bw)
−→
bA,A,A(1A·wA)wA = (wA·1A)wA

(cw) cA,AwA = wA

(bcw8) If cmA,B,C,D =df
−→
bA,C,B·D(1A·(

←−
b C,B,D(cB,C ·1D)

−→
bB,C,D))

←−
b A,B,C·D,

cmA,B,A,BwA·B = wA·wB .

(kw)
−→
k A,AwA = 1A,

←−
k A,AwA = 1A

The product equations say that product is a bifunctor. The (b), (bb), (c) and (cc) equations

say that the
−→
b and

←−
b arrows, which we call simply b arrows, and c arrows are natural isomor-

phisms. The equation (b5) is one of Mac Lane’s pentagonal equations and (bc6) is one of Mac

Lane’s hexagonal equations.

The equations (k) and (w) say that the
−→
k and

←−
k arrows (which we call k arrows) andw arrows

are natural transformations. The equation (bk) is related to Mac Lane’s triangular equations of

4



[1971, VII.1, p. 159]. From it we can derive (without using c arrows) the following two analogous

triangular equations:

(b
−→
k ) (

−→
k A,B ·1C)

−→
b A,B,C =

−→
k A,B·C

(b
←−
k ) (1A·

←−
k B,C)

←−
b A,B,C =

←−
k A·B,C

(cf. [Mac Lane 1971, VII.1, p. 161, Exercise 1]), which we use below. The equation (bcw8) is

one of the octagonal equations of [D.& P. 1996].

We haven’t economized in the above axiomatization of Cart− (some primitive arrows are

definable in terms of others and some of the equations are superfluous), but this axiomatization

has the advantage of extending the standard axiomatization of symmetric monoidal categories.

The category SyMon− is obtained by rejecting in our axiomatization of Cart− the k and w

arrows and the k and w-equations. Everything else is as for Cart−. It is easy to see that all

the arrows of SyMon− are components of natural isomorphisms, whereas the arrows of Cart−

are components of natural transformations, but not necessarily isomorphisms. (The operations on

arrows, composition and product, preserve natural transformations and isomorphisms.)

2. The Categories Cart and SyMon

The categoryCart is obtained fromCart− by assuming that we have in our propositional language

a propositional constant (nullary connective) I. In addition to the primitive arrows of Cart− we

also have the primitive arrows:

σI,A : I ·A ⊢ A, δA,I : A · I ⊢ A

σi
A : A ⊢ I ·A, δiA : A ⊢ A · I

which we call σδ arrows. These arrows say that I is a unit object. (The index I of σI,A and δA,I

may seem superfluous, but we need it for technical reasons, as it will become clear in the next

section.) The operations on arrows are as in Cart−, and Cart-terms are defined analogously. In

addition to the equations we had for Cart−-terms, now understood as equations between Cart-

terms, we also have:

σδ-equations

(σ) For g : B ⊢ D, gσI,B = σI,D(1I·g). (δ) For f : A⊢C, fδA,I = δC,I(f ·1I).

(σσi) σI,Aσ
i
A = 1A, σi

AσI,A = 1I·A, (δδi) δA,Iδ
i
A = 1A, δiAδA,I = 1A·I

(σδ) σI,I = δI,I

(σδb) (δA,I · 1C)
−→
bA,I,C = 1A · σI,C

(σδc) σI,AcA,I = δA,I

(σδk) σI,A =
−→
k I,A, δA,I =

←−
k A,I

(σδw) wI = σi
I

(The equation (σδw) can be wI = δiI, as well.)

In Cart most of the σδ-equations are superfluous. The equations (σ), (σσi), (δ) and (δδi)

say that σ and δ arrows are natural isomorphisms; the others serve as appropriate coherence

conditions.

5



The category SyMon is obtained by rejecting in our axiomatization of Cart the k and w

arrows, the k and w-equations, and the σδ-equations (σδk) and (σδw). This axiomatization of

the free symmetric monoidal category SyMon follows closely the postulates of Mac Lane [1971,

VII.1-7]. The notion of SyMon-term is analogous to the notion of Cart-term, but based on the

arrows of SyMon. All the arrows of SyMon are components of natural isomorphisms, whereas

the arrows of Cart are components of natural transformations, but not necessarily isomorphisms.

3. The Isomorphisms of Cart are Expressible by SyMon-Terms

To prove our theorem about the isomorphisms of Cart we need a number of definitions and some

preliminary lemmata.

From now on we call Cart-terms simply terms, since this is the largest class of arrow-terms

we shall envisage. We speak about Cart-terms only if there is a danger of confusion. A product

term is a term defined recursively as follows:

(0) The primitive terms−→
bA,B,C ,

←−
bA,B,C , cA,B , σI,A, σ

i
A, δA,I, δ

i
A,−→

k p,A,
←−
k A,p, wp

are product terms, called determining factors.

(1) The terms 1A are product terms.

(2) If f is a product term, then 1A · f and f · 1A are product terms.

The determining factor of a product term f , if it exists, is denoted by d(f). A product term

f is a b-product iff d(f) is a b term, c-product iff d(f) is a c term, and similarly for σ, σi, δ, δi,

k and w-products; it is a 1-product iff d(f) does not exist.

A term is developed iff it is of the form fn...f1, n ≥ 1, where each fi, 1 ≤ i ≤ n, is a product

term and fn is a 1-product.

In a developed term compositions are not nested in products, and arrows corresponding to

structural rules that are not identity don’t work in a parallel manner in products, but one after

another. Moreover, k and w terms of the form
−→
k B,C ,

←−
k C,B and wB where the formula B is

nonatomic or I have to be replaced by
−→
k p,A,

←−
k A,p and wp, or σI,A, δA,I and σi

I. We can prove

the following:

Development Lemma. Every term is equal to a developed term.

Proof. Start with a given term. First we use the equations:

−→
k A·B,C =

−→
k B,C(

−→
k A,B ·1C)

←−
k C,A·B =

←−
k C,A(1C ·

←−
k A,B)

which hold by (k) and (σδk), until we are left only with
−→
k p,A and

←−
k A,p. Next we use (bcw8)

and (σδw) until we are left only with wp. Finally, we use (·) and (· 1) to get a developed term

equal to the original term.

For example, the term −→
k p·I,p(cI,p · (

←−
k p,IcI,p))

is developed into

1pσI,p(
−→
k p,I · 1p)(cI,p · 1p)(1I·p · δp,I)(1I·p · cI,p),

and the term wI·p into

1(I·p)·(I·p)
−→
b I,p,I·p(1I ·

←−
b p,I,p)(1I · (cI,p · 1p))(1I ·

−→
b I,p,p)

←−
b I,I,p·p(σ

i
I · 1p·p)(1I ·wp).

q.e.d.

6



Note that the developed term of an arrow f : A ⊢ B where no propositional letter occurs in A,

but only I, is a SyMon-term. We call such arrows I-arrows. (Note that for an I-arrow f : A ⊢ B,

the formula B is also made only of I, there being no arrow in Cart of the type I ⊢ C where

propositional letters occur in C.)

We could give the Development Lemma in a sharper form by eliminating with the help of

(bc6) every cA,B where A and B are not atomic, ending up only with those where A and B are

atomic. (We can even replace cI,I by 1I·I.) This would simplify a little bit some of our definitions,

but is not essential for our proof.

Note that if there are no occurrences of b and c terms in a term we want to bring into a

developed form, they may be introduced only by applications of (bcw8). So if we deal with a

formulation of Cart where b and c arrows are not primitive, but defined in terms of k and w

arrows, and we want to show that a Cart-term is equal to a SyMon-term, the eventual presence

of b and c terms in our term will be made explicit through the agency of (bcw8). If our term is

equal to a SyMon-term, the remaining k and w terms in its developed form will be eliminated

by a procedure described in the Maximal-Path Lemma 2 below, while b and c terms introduced

by (bcw8) may remain.

Now we introduce a series of definitions leading to an analogue of Gentzen’s notion of a cluster

from [1938, §3.41] (cf. [Maehara 1954, §2.621] and [D. 1992, §5, pp. 312-313]).
In
−→
bA,B,C the occurrences of formulae A, B and C are the indices of this term. Note that

some of A, B and C might be occurrences of the same formula. We define indices similarly for

other primitive arrow-terms. Let fn...f1, n ≥ 1, be a developed term. Take the indices in fi in

the order in which they occur and delete product signs and parentheses. We call the resulting

sequence the fi-index word. For example, if fi is

1p·q · (
←−
b p,(q·r)·I,r · 1r)

the fi-index word is pqpqrIrr.

The length l(A) of a formula A is the number of symbols in it after deleting product signs

and parentheses. For example, l((p · I) · q) = 3. The sum of the lengths of the occurrences

of formulae A in the indices of the 1A terms left of d(fi) in fi is called L(fi). For example,

L(1p · (1I · ((1p · (1p·q ·wp)) · 1p))) = 5.

Take the fi-index word α1...αk, i < n, k ≥ 1, and the fi+1-index word β1...βm (it is easy to

see that m can be only k, or k+1, or k− 1). Then the set of successors of αj , 1 ≤ j ≤ k, denoted

by s(αj), is defined as follows:

(1,b) If fi a 1-product or b-product, then s(αj) = {βj}.
(Note that m = k.)

(c) If d(fi) is cA,B , then

if j < L(fi) + 1 or j > L(fi) + l(A) + l(B), then s(αj) = {βj};
if L(fi) + 1 ≤ j ≤ L(fi) + l(A), then s(αj) = {βj+l(B)};
if L(fi) + l(A) + 1 ≤ j ≤ L(fi) + l(A) + l(B), then s(αj) = {βj−l(A)}.
(Note that m = k.)

(
−→
k ) If d(fi) is kp,A, then

if j < L(fi) + 1, then s(αj) = {βj};
if j = L(fi) + 1, then s(αj) = ∅;
if j > L(fi) + 1, then s(αj) = {βj−1}.
(Note that m = k − 1.)

(
←−
k ) If d(fi) is kA,p, then we proceed as for

−→
k p,A, replacing L(fi) + 1 by L(fi) + l(A) + 1.

(w) If d(fi) is wp, then

7



if j < L(fi) + 1, then s(αj) = {βj};
if j = L(fi) + 1, then s(αj) = {βj , βj+1};
if j > L(fi) + 1, then s(αj) = {βj+1}.
(Note that m = k + 1.)

(σ) If fi is a σ-product, then we proceed as in case (
−→
k ).

(σi) If d(fi) is σ
i
A, then

if j ≤ L(fi), then s(αj) = {βj};
if j > L(fi), then s(αj) = {βj+1}.
(Note that m = k + 1.)

(δ) If d(fi) is δA,I, then we proceed as in case (
←−
k ).

(δi) If d(fi) is δ
i
A, then we proceed as in case (σi), replacing L(fi) by L(fi) + l(A).

For every β in the fn-index word, s(β) = ∅.
Now comes our analogue of Gentzen’s notion of a cluster. Take f1 in our developed term

fn...f1. Let the f1-index word be α1...αk. Take an αj that is not an occurrence of I (if it exists).

Then the set P (αj), called a progeny, is defined recursively as follows:

(0) αj ∈ P (αj);

(1) if β ∈ P (αj), then s(β) ⊆ P (αj).

For example, the developed term

1(p·p)·q(cp,p ·mjq)(kp·p,p · 1q)(
−→
b p,p,p · 1q)((1p ·wp) · 1q)

with product-terms written one below another, has the progeny P (α2) made of the encircled

occurrences of p:

(1p ·w⃝p ) · 1q−→
b p,⃝p ,⃝p · 1q←−
k p·⃝p ,⃝p · 1q

cp,⃝p · 1q

1(⃝p ·p)·q
A progeny in a developed term fn...f1 is a set of occurrences of the same propositional letter.

Every such occurrence is identified with two coordinates, the first being the i of the product term

fi and the second the place in the fi-index word. Note that all progenies of a developed term are

mutually disjoint.

The following definitions are related to progenies. A path in P (αj) is an m-tuple ⟨β1, ..., βm⟩,
m ≥ 1, such that for every i, 1 ≤ i ≤ m, βi ∈ P (αj), and for every i, 1 ≤ i < m, βi+1 ∈ s(βi).

(The upper index of βi does not refer to the place in an index word, but to the place in the path;

lower indices of α, β, ... are reserved for places in index words.) The length of a path ⟨β1, ..., βm⟩
is m. If β ∈ P (αj), then β is terminal iff s(β) = ∅. So, the leftmost encircled p’s in the example

above all belong to the same path of length 5. The encircled p in 1(⃝p ·p)·q and the right encircled

p in
←−
k p·⃝p ,⃝p · 1q are terminal.

If d(fi) is
−→
k p,A, then κ(fi), called the characteristic index of the fi-index word is αL(fi)+1. If

d(fi) is
←−
k A,p, then κ(fi) is αL(fi)+l(A)+1. Note that in fn...f1 the letter β ∈ P (αj) is terminal iff,

for some i, β is κ(fi) or β is from the fn-index word.

If 1gf is developed and g is a k-product, then f and g are confronted iff κ(g) is a successor of

an index of d(f). For example, if gf is (
←−
k q·q,p· 1p)(

−→
b q,q,p· 1p), then f and g are confronted; if gf

is (1q·q ·
←−
k p,p)

−→
b q,q,p·p, then f and g are not confronted, since the right p from

←−
k p,p is a successor

of a proper part of the index p · p of
−→
b q,q,p·p. Graphically, in the first case we have−→

b q,q,⃝p · 1p←−
k q·q,⃝p · 1p

8



whereas in the second case we have −→
b q,q,p·⃝p

1q·q ·
←−
k p,⃝p

We need all these definitions to prove the following lemma, which is about things analogous

to the permuting of rules in a cut-elimination procedure. In our lemma, one permutes k-products

with other terms.

k–Permutation Lemma. Suppose that 1gf is developed, that g is a k-product, that gf is

neither of the form
←−
k I,pσ

i
p nor

−→
k p,Iδ

i
p, and that for f a w-product, f and g are not confronted.

Then gf = f ′g′ where g′ is a k-product, 1f ′g′ is developed, and for j such that κ(g) ∈ s(αj) in

P (αj) in 1gf , we have in 1f ′g′ that βj from the g′-index word β1...βk is terminal in P (βj) (i.e.,

βj is κ(g′); note that the f -index word coincides with the g′-index word and that αj and βj are

occurrences of the same propositional letter). Moreover, for αj in the f -index word that is not an

occurrence of I, the number of paths of length 3 in P (αj) in 1gf is equal to the number of paths

of length 3 in P (βj) in 1f ′g′.

Proof. If f and g are not confronted, then we use one of the equations (cat1), (·), (b), (c), (k),
(w), (σ), (δ), (σi) and (δi). For example, if gf is (1A·B ·

←−
k C,p)

−→
bA,B,C·p, then we have

gf = ((1A · 1B) ·
−→
k p,C)

−→
bA,B,p·C , by (·1)

=
−→
b A,B,C(1A · (1B ·

−→
k p,C)), by (b).

It remains to consider cases where f and g are confronted.

If f is a b-product, then we use the equations:

(
−→
k p,B · 1C)

−→
b p,B,C = 1B·C

−→
k p,B·C , by (b

−→
k ) and (cat1),

(
←−
k A,p · 1C)

−→
bA,p,C =1 A·C(1A ·

−→
k p,C), by (bk) and (cat1),

←−
k A·B,p

−→
bA,B,p = 1A·B(1A ·

←−
k B,p), by (b

←−
k ), (bb) and (cat1),

−→
k p,B·C

←−
b p,B,C = 1B·C(

−→
k p,B · 1C), by (b

−→
k ),(bb) and (cat1),

(1A ·
−→
k p,C)

←−
bA,p,C =1 A·C(

←−
k A,p · 1C), by (bk), (bb) and (cat1),

(1A ·
←−
k B,p)

←−
b A,B,p =1 A·B

←−
k A·B,p, by (b

←−
k ) and (cat1).

If f is a c-product, then we use the equations:

−→
k p,AcA,p = 1A

←−
k A,p, by (ck) and (cat1),

←−
k A,pcp,A = 1Akp,A, by (ck), (cc) and (cat1).

If f is a k-product, then we use the equations:

−→
k p,A(

−→
k q,p · 1A) =

−→
k q,A(

←−
k q,p · 1A), by (k),

←−
k A,p(1A ·

−→
k q,p) =

←−
k A,q(1A ·

←−
k q,p), by (k),

which are read from left to right and from right to left.
If f is a σ or δ-product, then we use the equations:

−→
k p,A(σI,p · 1A) = σI,A(

←−
k I,p · 1A),←−

k A,p(1A · σI,p) = δA,I(1A · kI,p),−→
k q,A(δq,I · 1A) = σI,A(

−→
k q,I · 1A),−→

k A,q(1A · δq,I) = δA,I(1A · kq,I),

which are derived with the help of (k) and (σδk), and correspond to the equations displayed above

where f is a k-product.

If f is a σi or δi-product, then we use the equations:

(
←−
k I,p · 1A)(σ

i
p · 1A) = σi

A
−→
k p,A,

(1A ·
←−
k I,p)(1A · σi

p) = δiA
←−
k A,p,

9



(
−→
k p,I · 1A)(δ

i
p · 1A) = σi

A
−→
k p,A,

(1A ·
−→
k p,I)(1A · δip) = δiA

←−
k A,p.

The left-hand side of the first of the last four equations is equal, by (bb) and (cat1), to

(
←−
k I,p· 1A)

−→
b I,p,A

←−
b I,p,A(σ

i
p · 1A),

which with the help of triangular equations and (σi) reduces to the right-hand side. We proceed

similarly to derive the remaining three equations.

q.e.d.

For the proof of the next lemma we need to define what it means to interpretCart in a concrete

cartesian category. For example, take as our concrete category Set, the cartesian category of sets.

The objects of Set are sets, the arrows are functions between sets, · is cartesian product on objects,

I is the singleton {∅}, the arrow 1A is the identity map, k arrows are the projections, w arrows

are diagonal maps, σi and δi assign to an element a the pairs ⟨∅, a⟩ and ⟨a, ∅⟩ respectively, · is
defined on functions via coordinates, and the b, c, σ and δ arrows are defined in terms of k and

w arrows as in sections 1 and 2. A cartesian functor from Cart to Set is called an interpretation

of Cart in Set. Such interpretations exist because of the freedom of Cart.

Preservation Lemma. For every isomorphism f : A ⊢ B of Cart, a propositional letter occurs

n times in the formula A iff it occurs n times in the formula B.

Proof. Suppose p occurs n times in A and m times in B so that m ̸= n. Take the interpretation

v of Cart in Set such that v(p) = {∅, {∅}} and, for every letter q different from p, v(q) = {∅}.
Then the cardinality of v(A) is 2n, which is different from the cardinality of v(B), the latter being

2m. So v(f), and therefore f too, cannot be isomorphisms. (Note that v interprets Cart in the

cartesian category of finite sets, too.)

q.e.d.

As a corollary we have the following lemma, which makes inoffensive the restriction concerning

σi and δi in the k–Permutation Lemma:

σiδiLemma. If fn...f1 is the developed term of an isomorphism of Cart, then for no i, 1 ≤ i < n,

we can have fi+1fi of the form
←−
k I,pσ

i
p or

−→
k p,Iδ

i
p.

Proof. There is no arrow of Cart of the type I ⊢ A where there are propositional letters in the

formula A. So, if the lemma were not true, we would obtain a contradiction with the Preservation

Lemma.

q.e.d.

Let us introduce one more definition. We shall say that a w-product fi in a developed term

fn...f1 is linked to a progeny P (αj) iff the index of d(fi) belongs to P (αj). Similarly, a k-product fi
is linked to P (αj) iff κ(fi) ∈ P (αj) (this characteristic index is terminal in P (αj)). It is clear that

every w and k-product is linked to only one progeny. We need this notion of linking for the proof

of the following lemma, which will serve to determine where lie the w-product and k-product that

shall be brought next to each other by applying the k–Permutation Lemma, and then eliminated.

10



Maximal-Path Lemma 1. If fn...f1 is the developed term of an isomorphism of Cart, then

every progeny in fn...f1 has exactly one path of length n.

Proof. Note that in every progeny P (αj) with m w-products linked to it, m ≥ 0, there are m+ 1

terminal members. If P (αj) has no path of length n, then all terminal members are characteristic

indices originating in k-products. Consequently, if P (αj) has no path of length n and there are m

w-products linked to P (αj), then there are m+ 1 k-products linked to P (αj).

Suppose now that P (αj) has no path of length n. We obtain a contradiction by induction on

the number m of w-products linked to P (αj).

If m = 0, there is exactly one k-product linked to P (αj). By applying the k–Permutation

Lemma to fn...f1 we push this k-product to the right until we obtain a developed term gn...g1,

equal to fn...f1, where g1 is a k-product. Note that, by the σiδi Lemma, there is no way to get←−
k I,pσ

i
p or

−→
k p,Iδ

i
p while pushing our k-product to the right. Take an interpretation v of Cart

in Set such that for the propositional letter p in κ(g1) we have v(p) = {∅, {∅}}, and for every

other propositional letter q, v(q) = {∅}. If our original isomorphism was an arrow fn...f1 : A ⊢ B,

then we have gn...g1 : A ⊢ B. The cardinality of v(A) is twice as big as the cardinality of the

image of v(A) under the function v(g1). Since, for no function, the cardinality of the image of a

set can be greater than the cardinality of this set, the cardinality of the image of v(A) under the

function v(gn...g1), which is equal to v(gn)...v(g1), is strictly smaller than the cardinality of v(A).

So fn...f1, which is equal to gn...g1, is not an isomorphism. (The permuting of the k-product in

the basis of this induction is not strictly needed, but makes the exposition simpler.)

If m > 0, take a k-product fi in fn...f1, linked to P (αj), and apply the k–Permutation Lemma.

Two cases can arise. In the first case our k-product will never get confronted with a w-product

while applying the k–Permutation Lemma. Then we push it to the extreme right and reason as

in the basis of the induction. The remaining case is that we get a k-product g confronted with a

w-product f in the term gf that occurs in a developed term equal to fn...f1. Then we replace gf

by 1C1C using (kw), (·) and (·1), and we apply the induction hypothesis to the resulting term.

So there is at least one path of length n in P (αj).

11



If there are two paths of length n in P (αj), then, by the Preservation Lemma, there is a

progeny, made of occurrences of the same letter that occurs in P (αj), in which there is no path

of length n, and this we have just proved to be impossible.

q.e.d.

Next we prove a kind of converse of the Maximal-Path Lemma 1:

Maximal-Path Lemma 2. If every progeny in the developed term fn...f1 has exactly one path

of length n, then fn...f1 is equal to a SyMon-term.

Proof. Suppose for fn...f1 that

(*) in every progeny there is exactly one path of length n.

If fn...f1 stands for an I-arrow, then, according to the remark after the proof of the Development

Lemma, it is a SyMon-term. If fn...f1 does not stand for an I-arrow, then we show that it is

equal to a SyMon-term by induction on the number of w-products in it. As we have remarked

at the beginning of the proof of the Maximal-Path Lemma 1, in a progeny with m w-products

linked to it, there are m + 1 terminal members. From (*) it follows that there are m k-products

linked to that progeny. Therefore, since every w or k-product is linked to only one progeny, the

number of w-products in fn...f1 is equal to the number of k-products.

Let the numberm ofw-products in fn...f1 be 0. As we have just shown, there are no k-products

in fn...f1, and therefore this term is a SyMon-term.

If m > 0, then we take the leftmost w-product in fn...f1; call it fi. Let P (αj) be the progeny

to whom fi is linked. Then, by (*), there is a k-product fk, with 1 ≤ i < k < n, linked to

P (αj) (otherwise, we would have in P (αj) at least two paths of length n). By the k–Permutation

Lemma, we can push this k-product to the right until it is confronted with fi in

fn...fk+1f
′
k...f

′
i+1fi...f1.

Note that terms of the form
←−
k I,pσ

i
p or

−→
k p,Iδ

i
p cannot occur during the permuting of k-products

since this permuting preserves (*). Then, due to (kw), (·) and (·1), we obtain a developed term

fn...fk+1f
′
k...f

′
i+21A1Afi−1...f1

equal to fn...f1. By the induction hypothesis, this term is equal to a SyMon-term.

q.e.d.

We can now state our main result:

Theorem. An arrow-term denotes an isomorphism of Cart iff it is equal to an arrow-term of

SyMon.

Proof. Suppose for the only-if part that f is a term of an isomorphism of Cart. By the Develop-

ment Lemma, f is equal to a developed term fn...f1, and by the Maximal-Path Lemmata 1 and

2, fn...f1 is equal to a SyMon-term.

The if part of the theorem follows immediately from the definition of SyMon arrows.

q.e.d.

The category SyMon is a subcategory of Cart (see [P. 1997]). Having this in mind, we could

reformulate the Theorem as follows: an arrow of Cart is an isomorphism iff it is an arrow of

SyMon.

12



Note that all arrows of SyMon are isomorphisms not only in Cart but also in SyMon. In

other words, SyMon is a groupoid in the sense of Brandt. So we could express our theorem by

saying that it is the greatest groupoid subcategory of Cart.

Our theorem cannot be extended to arbitrary cartesian categories. For example, if we deal

with a preordered cartesian category (i.e. one in which between any pair of objects there is at most

one arrow), then wA is an isomorphism, its inverse being
−→
k A,A, which is equal to

←−
k A,A in such

a category (actually, for cartesian categories C, the conditions: (1) wA
−→
k A,A = 1A·A = wA

←−
k A,A,

(2)
−→
k A,A =

←−
k A,A, (3) cA,A = 1A·A, and (4) C is preordered, are all equivalent). Of course, wA is

not expressible by a SyMon term.

Our theorem can also not be extended to closed cartesian and symmetric monoidal categories.

It does not hold that an arrow of the cartesian closed category CartCl freely generated by a set is

an isomorphism only if it is an arrow of the symmetric monoidal closed category SyMonCl freely

generated by the same set (in SyMon every arrow is an isomorphism, but not so in SyMonCl).

In CartCl we have an isomorphism between (p · q)r and pr ·qr, but in SyMonCl there are arrows

neither from (p · q)r to pr · qr nor vice versa.

However, our theorem holds if we replace Cart by Cart− and SyMon by SyMon−. It is

enough to go over our proof and keep the relevant parts involving Cart− and SyMon−.

The proof of our theorem provides a procedure for deciding whether an arrow in Cart is an

isomorphism. Namely, by combining the Maximal-Path Lemmata 1 and 2 and the if part of the

Theorem we obtain that fn...f1 is the developed term of an isomorphism of Cart iff in every

progeny it has exactly one path of length n. So, to determine whether a Cart-term stands for an

isomorphism it is enough to put it in a developed form fn...f1 according to the procedure described

in the proof of the Development Lemma, and then check whether every progeny has exactly one

path of length n.

For example, take the term

(cp,p
←−
k p·p,p

−→
b p,p,p(1p ·wp)) · 1q.

It is developed into

1(p·p)·q(cp,p · 1q)(
←−
k p·p,p · 1q)(

−→
b p,p,p · 1q)((1p ·wp) · 1q),

which we already had in the example after the definition of progeny. Every progeny in this devel-

oped term has exactly one path of length 5, and hence our original term stands for an isomorphism.

According to the procedure in the proof of the Maximal-Path Lemma 2, the developed term above

is transformed successively into

1(p·p)·q(cp,p · 1q)1(p·p)·q((1p ·
←−
k p,p) · 1q)((1p ·wp) · 1q)

1(p·p)·q(cp,p· 1q)1(p·p)·q 1 (p·p)·q1(p·p)·q.

The last term is equal by (cat1) to the isomorphism cp,p · 1q of SyMon.

It is not essential for our proof of the Theorem thatCart andCart− should be formulated with

the official primitives of the first two sections. The alternative, more standard, formulations where

b and c arrows are not primitive would do as well (though we suppose our official formulations

clarify matters). However, it is essential for our proof to derive then the octagonal equation

(bcw8), and use it as in the proof of the Development Lemma to generate arrow-terms with b

and c by atomizing the indices ofw. If the arrow ofCart from which we started is an isomorphism,

we shall then be able to eliminate all the k and w terms according to our procedure, ending up

with an arrow of SyMon. In all that, the role of the octagonal equation, primitive or derived, is

crucial.

A simpler proof of the result of this paper may be obtained by relying on a coherence theorem

for cartesian categories. This theorem says that two arrow-terms of Cart are equal in Cart iff

they have the same graph, where a graph is defined by using an idea of [Kelly 1972, p. 94] (see

also [Kelly 1972a], [Mints 1980, Theorem 2.2] and [P. 1997]). A graph of an arrow term denoting

an isomorphism of Cart is a bijection between two finite ordinals, and an arrow-term of SyMon

with the same graph can always be found. We realized that there is such a simpler proof after

13



completing this paper. As we said in the introduction, we believe that the direct, more involved,

proof given here is still worth presenting because of its proof-theoretical interest.

Acknowledgements. We would like to thank Anne Preller and Djordje Čubrić for some helpful

comments on an earlier version of this paper. We are also grateful to Professor Saunders Mac

Lane for reminding us about some references mentioned in the last paragraph. Our work was

supported by the Mathematical Institute in Belgrade through Grant 0401A.

Kosta Došen

IRIT, University of Toulouse III

31062 Toulouse cedex, France

Mathematical Institute

P.O. Box 367

11001 Belgrade, Yugoslavia

email: kosta@mi.sanu.ac.yu

Zoran Petrić

University of Belgrade

Department of Mining and Geology

Djušina 7

11000 Belgrade, Yugoslavia

email: zpetric@rgf.rgf.bg.ac.yu

References

K.B. Bruce, R. Di Cosmo and G. Longo, 1992, Provable isomorphisms of types, Mathematical
Structures in Computer Science 2, pp. 231-247.

R. Di Cosmo, 1995, Isomorphisms of Types: from λ-calculus to information retrieval and language
design, Birkhäuser, Boston.

K. Došen, 1989, Logical constants as punctuation marks, Notre Dame Journal of Formal Logic vol.
30, pp. 362-381 (slightly amended version in: D.M. Gabbay ed., What is a Logical System?,
Oxford University Press, Oxford, 1994, pp. 273-296).

K. Došen, 1992, Modal translations in substructural logics, Journal of Philosophical Logic 21, pp.
283-336.

K. Došen and Z. Petrić, 1996, Modal functional completeness, in: H. Wansing ed., Proof Theory
of Modal Logic, Kluwer, Dordrecht, pp. 167-211.

K. Došen and P. Schroeder-Heister, eds., 1993, Substructural Logics, Oxford University Press,
Oxford.

G. Gentzen, 1938, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie,
Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften N.S. 4, pp. 19-44
(English translation in: The Collected Papers of Gerhard Gentzen, M.E. Szabo ed., North-
Holland, Amsterdam, 1969, pp. 252-286).

G.M. Kelly, 1972, Many-variable functorial calculus I, in: S. Mac Lane ed., Coherence in Cate-
gories, Lecture Notes in Mathematics 281, pp. 66-105, Springer, Berlin.

G.M. Kelly, 1972a, An abstract approach to coherence, in: S. Mac Lane ed., Coherence in Cate-
gories, Lecture Notes in Mathematics 281, pp. 106-147, Springer, Berlin.

S. Mac Lane, 1971, Categories for the Working Mathematician, Springer, Berlin.

S. Maehara, 1954, Eine Darstellung der intuitionistischen Logik in der klassischen, Nagoya Math-
ematical Journal 7, pp. 45-64.

G.E. Mints, 1980, Category theory and proof theory (in Russian), in: Aktual’nye voprosy logiki
i metodologii nauki, Naukova Dumka, Kiev, pp. 252-278 (English translation, with permuted

14



title, in: G.E. Mints, Selected Papers in Proof Theory, Bibliopolis, Naples, 1992).

Z. Petrić, 1997, Coherence in substructural categories (to appear).

S.V. Soloviev, 1981, The category of finite sets and cartesian closed categories (in Russian), Zapiski
nauchnykh seminarov LOMI 105, pp. 174-194 (English translation in the Journal of Soviet
Mathematics 22, 1983, pp. 1387-1400).

15


