Mathematical Colloquim

 

PROGRAM


ODELJENJE ZA MATEMATIKU
MATEMATIČKOG INSTITUTA SANU

                      


PROGRAM ZA MART 2017.


PETAK, 17.03.2017. u 14:15, Sala 301f, MI SANU, Kneza Mihaila 36
Hans G. Feichtinger, University of Vienna, Austria
FOURIER STANDARD SPACES: A NEW FAMILY OF FUNCTION SPACES
Classical Harmonic Analysis is focusing very much on the Lebesgue spaces $L^1,L^2,L^\infty$, because they appear at first sight as natural domains for convolution or the Fourier transform. As it has turned out a variant of distribution theory, arising from problems in time-frequency analysis, gives rise the a description of the Fourier transform as an automorphism of the Banach Gelfand Triple (or rigged Hilbert space) $(S_0,L^2,S_0')(R^d)$, i.e. the Plancherel theorem restricts well to the space of test functions $S_0(R^d)$ but also extends well to the distibutions in $S_0'(R^d)$, including Dirac measures, Dirac combs, or pure frequencies.
Fourier standard spaces is a family of Banach spaces between $S_0(R^d)$ and $S_0'(R^d)$, with some extra properties, essentially allowing smoothing (by convolution) and localization (by pointwise multiplication). It is the purpose of this talk to indicate the richness of this family of Fourier standard spaces, among them Wiener amalgam spaces or modulation spaces, and to present a few general claims which can be made for the Banach spaces in this family. Of course, the classical $L^p$-spaces belong to this family, however without playing a significant role there.


PETAK, 24.03.2017. u 14:15, Sala 301f, MI SANU, Kneza Mihaila 36
Marko Radovanovic, Matematicki fakultet, Beograd
GREBNEROVE BAZE ZA MNOGOSTRUKOSTI ZASTAVA I PRIMENE
Rezime: Po Borelovom opisu, celobrojna kohomologija (kompleksne) mnogostrukosti zastava F data je kao polinomijalna algebra posecena po odredenom idealu IF. Ovaj opis prirodno je povezan sa jednom aditivnom bazom BF kohomologije koja je zadata monomima u Cernovim klasama.
Na ovom predavanju predstavicemo Grebnerove baze za ideale IF i pokazati kako one zadaju (minimalan) skup pravila za mnozenje elemenata iz BF. Na nekoliko primera prikazacemo primene ovi rezultata.
Ovo je zajednicki rad sa Zoranom Petrovicem i Branislavom Prvulovicem.


PETAK, 31.03.2017. u 14:15, Sala 301f, MI SANU, Kneza Mihaila 36
Tijana Sukilovic, Matematicki fakultet, Beograd
GEOMETRIJA NILPOTENTNIH LIJEVIH GRUPA U MALIM DIMENZIJAMA
Nilpotentne Lijeve grupe sa levo-invarijantnom metrikom se prirodno javljaju u raznim oblastima geometrije i algebre. Dok je klasa 2-step nilpotentnih Lijevih grupa detaljno izucavana, to nije slucaj sa grupama viseg stepena nilpotentnosti. Na predavanju ce biti dat prikaz poznatih rezultata, sa posebnim osvrtom na neke klasicne primere, kao sto je Hajzenbergova grupa. Takodje, razmatracemo i aktuelne pravce istrazivanja u ovoj oblasti i ukazati na neke otvorene probleme.





Odeljenje za matematiku je opsti matematicki seminar namenjen sirokoj publici. Predavanja su prilagodjena matematicarima i onima koji zele da to postanu.


Zoran Petric, Odeljenje za matematiku Matematickog instituta SANU