ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Seminar for Mathematical Logic

 

PROGRAM


Plan rada Seminara za logiku za oktobar 2014.

Seminar za matematicku logiku Matematickog instituta SANU nastavlja rad u letnjem semestru 2011/2012.g. na ovoj adresi: Kneza Mihaila 36/III sprat, soba 301f - sala za seminare. Cetvrtkom posle podne, ali od 15:00 sati, odrzavace se predavanja na Seminaru iz verovatnosnih logika pod rukovodstvom Profesora Miodraga Raskovica koji je u decembru 2007. dobio akreditaciju Naucnog veca Instituta. Na taj nacin, ponovo, kao pre vise decenija, postoje dva logicka seminara.



PETAK, 17.10.2014. U 16:15 (MI SANU, 301f)

SVECANO OKUPLJANJE POSVECENO PROFESORU ZARKU MIJAJLOVICU

Nakon sastanka bice organizovan koktel u biblioteci Instituta.

Petak, 24.10.2014. U 16:15 (MI SANU, 301f)
Petar Markovic, PMF, Novi Sad
ON OPTIMAL STRONG MAL'CEV CHARACTERIZATIONS OF CONGRUENCE MEET-SEMIDISTRIBUTIVITY

Abstract: We prove a strong Mal'cev characterization of congruence meet-semidistributivity in locally finite varieties. The result is that a locally finite variety V is congruence meet-semidistributive if and only if there is a V-term t(x,y,z,u) such that t(x,x,x,x) = x and t(y,x,x,x) = t(x,y,,x,x) = t(x,x,y,x) = t(x,x,x,y) = t(y,y,x,x) = t(y,x,y,x) = t(x,y,y,x) hold identically in V. This characterization implies most of the known ones. The proof uses the fact that congruence meet-semidistributivity implies that Constraint Satisfaction Problem instance has a solution as long as there are no local inconsistencies. This allows us to construct very large instances without local inconsistencies, so large that a Ramsey argument may be applied to produce the desired term. We finish the lecture with a couple of open problems. This is a joint work with Jelena Jovanovic and Ralph McKenzey.

PETAK, 31.10.2014. U 16:15 (MI SANU, 301f)
Slavko Moconja, Matematicki fakultet, Beograd
MUST A QUASI-MINIMAL GROUP BE COMMUTATIVE?

Abstract: A first order structure is called minimal if every definable subset of the domain is either finite or co-finite (the complement is finite); an uncountable first order structure is called quasi-minimal if every definable subset of the domain is either countable or co-countable. Reineke in 1974. proved that every minimal group is Abelian, therefore it is natural to ask if every quasiminimal group is commutative. We shall give a partial positive answer, and discuss the general situation.








OBAVESTENJA:

Ukoliko zelite mesecne programe ovog Seminara u elektronskom obliku, obratite se: zpetric@mi.sanu.ac.rs ili tane@mi.sanu.ac.rs. Programi svih seminara Matematickog instituta SANU nalaze se na sajtu: www.mi.sanu.ac.rs



Beograd,
Srdacan pozdrav,

rukovodioci seminara Zoran Petric i Predrag Tanovic