ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Seminar for Geometry, education and visualization with applications

 

PROGRAM


MATEMATIČKI INSTITUT SANU
Seminar geometriju, obrazovanje i vizualizaciju sa primenama

PLAN RADA ZA FEBRUAR 2009.

ČETVRTAK, 12.02.2009. u 18 sati, sala 843
Srdjan Vukmirović, Kristina Obrenović
ISKOŠENE SFERE NA SFERI S^6

Apstrakt: Dajemo karakterizaciju iskosenih malih i velikih sfera na skoro hermitskoj sferi S^6 koje su dobijene u preseku sa trodimenzionim afinim ravnima. Da bismo dobili taj rezultat, potrebno je razumeti interesantnu geometriju oktoniona o cemu ce biti reci na predavanju.

ČETVRTAK, 19.02.2009. u 17 sati, sala 843
Branko Dragovic
NELOKALNA TEORIJA POLJA

Predavanje se sastoji iz dva dela: 1. Promocija casopisa p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS (osnivac Ruska akademija nauka, izdavac Nauka, distributer Springer). (na Web strani Seminara imate pdf fajl sa vise informacija) 2. Predavanje Nelokalna teorija polja (Nonlocal Field Theory): A physical field is a function of spatial coordinates and time. It plays an important role in many parts of theoretical and mathematical physics. Well known examples of fields are: electromagnetic field, gravitational field, scalar field, Dirac field… There is classical and quantum field theory. Quantum field is a fundamental tool to describe properties of elementary particles. Usually, field theory models are local, i.e. Lagrangian contains derivatives only of the first order. However, in order to overcome some usual difficulties, nonlocal field models have been also considered. Modern nonlocal field theories contain an infinite number of derivatives. They appear in conventional and p-adic string theory, noncommutative quantum models and nonlocal cosmology. After a brief overview, I shall present an effective nonlocal scalar field theory, which origin is in p-adic string theory.

ČETVRTAK, 26.02.2009. u 17 sati, sala 843
Branko Dragovic
NELOKALNA TEORIJA POLJA

Abstract: A physical field is a function of spatial coordinates and time. It plays an important role in many parts of theoretical and mathematical physics. Well known examples of fields are: electromagnetic field, gravitational field, scalar field, Dirac field… There is classical and quantum field theory. Quantum field is a fundamental tool to describe properties of elementary particles. Usually, field theory models are local, i.e. Lagrangian contains derivatives only of the first order. However, in order to overcome some usual difficulties, nonlocal field models have been also considered. Modern nonlocal field theories contain an infinite number of derivatives. They appear in conventional and p-adic string theory, noncommutative quantum models and nonlocal cosmology. After a brief overview, I shall present an effective nonlocal scalar field theory, which origin is in p-adic string theory.

Sednice seminara odrzavaju se u zgradi Matematickog fakulteta Beograd, Studentski trg 16, na petom spratu u sali 843.

Rukovodilac Seminara dr Srdjan Vukmirovic