ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Seminar on Computer Science and Applied Mathematics

 

PROGRAM


Matematički Institut SANU, Beograd
Knez Mihajlova 36
Fakultet organizacionih nauka, Univerzitet u Beogradu,
Jove Ilica 154
IEEE Chapter Computer Science (CO-16) Belgrade, Republic of Serbia

SEMINAR ZA RAČUNARSTVO I PRIMENJENU MATEMATIKU

MI SANU, Knez Mihailova 36, sala 301f

PLAN RADA SEMINARA ZA JUN 2020. GODINE

Zbog trenutne epidemiološke situacije, predavanja na seminaru će se održavati na daljinu, a slušaoci mogu da ih prate preko linka https://miteam.mi.sanu.ac.rs/asset/qChPcMcAoji9JH5Dc



UTORAK, 09.06.2020. u 14:15, Live stream Beograd
Nada Staletić, Fakultet organizacionih nauka
CITIZENS' READINESS TO CROWDSOURCE SMART CITY SERVICES: A DEVELOPING COUNTRY PERSPECTIVE
The paper studies the citizens' readiness for implementation of crowdsourcing services of a smart city. The main goal is to develop a methodological approach that would enable the identification of those crowdsourcing services based on the Internet of things and mobile technologies that are expected to encourage the participation of citizens. The research focus is on developing countries and cities not yet fully aligned with smart city standards. The methodological approach of examining citizens' readiness was based on an analysis of various models of crowdsourcing, such as crowd wisdom, crowdfunding, crowdvoting and crowdsensing, and their application in various fields, such as traffic, environmental conservation, utility services and health. The data was gathered in the city of Belgrade, the capital city of the Republic of Serbia, for two years through a survey that included a sample of 210 citizens. The results indicate that citizens are ready to accept crowdsourcing services based on crowdfunding, crowdvoting and crowd wisdom models. In addition, the results reveal that citizens are interested in environmental conservation (crowdfunding services that support solar energy development and environmental protection) and public transportation (crowdvoting and crowd wisdom services that can improve the state of the public transport). The obtained results could serve as a good basis for initiating the realization of smart city projects in Serbia. In addition, the proposed methodological approach and conclusions could also serve as a part of a wider framework for the selection of implementation projects in other cities and governments.

UTORAK, 16.06.2020. u 14:15, Live stream Beograd
Nebojša Nikolić, Fakultet organizacionih nauka
ŠTAJNEROVI SISTEMI I (V,K,T)−POKRIVANJA
Štajnerov sistem S(t,k,v) je skup koji sadrži v elemenata (v-skup) sa familijom k-podskupova (blokova), takvih da je svaki t-podskup sadržan u tačno jednom bloku. U slučaju (v,k,t)−pokrivanja, svaki t-podskup je sadržan u bar jednom bloku date familije. Problem egzistencije Štajnerovog sistema S(t,k,v) i problem određivanja vrednosti C(v,k,t) (kardinalnost minimalnog (v,k,t)−pokrivanja) su otvoreni problemi, a njihova rešenja su poznata samo u nekim specijalnim slučajevima. U radu je data nova kombinatorna konstrukcija minimalnih (v,3,2)−pokrivanja, koja predstavljaju uopštenje Bouzove i Skolemove konstrukcije Štajnerovih sistema trojki STS(6n + 3) i STS(6n + 1). Preostale konstrukcije (v,k,t)−pokrivanja su herističke. Koristeći pohlepni algoritam i takozvanu LR proceduru, razvijene su i implementirane tri heuristike: metoda velikih okolina, metoda promenljivog spusta i opšta metoda promenljivih okolina. Njihovom primenom u 23 slučaja su poboljšane do sada najbolje granice vrednosti C(v,k,t).

UTORAK, 23.06.2020. u 14:15, Live stream Beograd
Aleksandar Jović, Matematički fakultet Beograd
KUN-TAKEROVI USLOVI OPTIMALNOSTI U VEKTORSKOJ OPTIMIZACIJI
U ovom predavanju razmotrićemo uslove optimalnosti za dobro poznat gladak problem optimizacije po neprekidnom vremenu. Neki prethodni uslovi optimalnosti za glatke i neglatke probleme su nekorektni, jer su dobijeni korišćenjem pogrešnih teorema iz literature. Problem je razmatran u konceptu Pareto optimalnosti.

UTORAK, 30.06.2020. u 14:15, Live stream Beograd
Luka Matijević, Matematički institut SANU
ASYMMETRIC VEHICLE ROUTING PROBLEM WITH TIME AND CAPACITY CONSTRAINTS: EXACT AND HEURISTIC APPROACHES
The problem of delivering online ordered and possibly perishable goods from a single depot (warehouse) to multiple customers can be modeled as an asymmetric vehicle routing problem. It consists of visiting and serving all customers using a limited number of homogeneous vehicles. The time and capacity constraints are imposed, i.e., all the customers should be served within the pre-specified time window and the capacity of each vehicle should not be exceeded. The objective function to be minimized is the total distance traveled with an assumption that the distance matrix is asymmetric (as it is usual case in real life applications). Starting with a mixed-integer programming (MIP) formulation of the problem, we apply three matheuristic methods. In addition, we developed several Local Search based metaheuristic methods exploring combinatorial formulation of the considered problem. All the methods are compared on real life instances from a hypermarket company in Serbia and benchmark instances available on the Internet.
This is the joint work with V. Ilin, T. Davidović, and P. M. Pardalos.




RUKOVODIOCI SEMINARA

MI SANU
Vera Kovačević-Vujčić
Milan Dražić

FON
Zorica Bogdanovic
Marijana Despotovic-Zrakic

IEEE
Bozidar Radenkovic