ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζωῶν τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Mathematical Colloquium

 

PROGRAM


ODELJENJE ZA MATEMATIKU
MATEMATIČKOG INSTITUTA SANU

                      

Registracija za učešće na seminaru je dostupna na sledećem linku:
https://miteam.mi.sanu.ac.rs/asset/tz97w4Hu4c3unsJ7N.
Ukoliko ste vec registrovani predavanje možete pratiti na sledećem linku (nakon sto se ulogujete):
https://miteam.mi.sanu.ac.rs/asset/J6zEMJyMSoAbTMMX7.
Neulogovani korisnici mogu pratiti prenos predavanja na ovom linku (ali ne mogu postavljati pitanja osim putem chata i ne ulaze u evidenciju prisustva):
https://miteam.mi.sanu.ac.rs/call/T9XDGChhq8aDcNqmz/qw7wIwci2jv2rdg9I9CrXkm7OJhF_LB8DfjXZp4jTFV.


PROGRAM ZA AVGUST 2024.


Petak, 09.08.2024. u 16:15, Kneza Mihaila 36, sala 301f i Online
Kyle Gannon, BICMR, Peking University, Beijing
GENERICALLY STABLE IDEMPOTENT MEASURES IN ABELIAN GROUPS
Given a locally compact topological group, there is a correspondence between idempotent probability measures and compact subgroups. An analogue of this correspondence continues into the model theoretic setting. In particular, if G is a stable group, then there is a one-to-one correspondence between idempotent Keisler measures and type-definable subgroups. The proof of this theorem relies heavily on the theory of local ranks in stability theory. Recently, we have been able to extend a version of this correspondence to the abelian setting. In this context, we prove that generically stable idempotent Keisler measures correspond to fsg subgroups. These results rely on recent work connecting generically stable measures to generically stable types over the randomization. This is joint work with Artem Chernikov and Krzysztof Krupinski.
Zajednički sastanak sa Logičkim seminarom.






Odeljenje za matematiku je opsti matematicki seminar namenjen sirokoj publici. Predavanja su prilagodjena matematicarima i onima koji zele da to postanu.


Zoran Petrić, Odeljenje za matematiku Matematickog instituta SANU