STUDENT Seminar

 

PROGRAM


Plan rada Studentskog seminara za NOVEMBAR 2021.



PETAK, 05.11.2021. u 12:00, Live stream
Luka Matijević, Matematički institut SANU
METAHEURISTIC APPROACHES FOR THE GREEN VEHICLE ROUTING PROBLEM
Vehicle routing problem (VRP) belongs to the class of optimization problems that has many real-life applications. Usually, the objective is to minimize the distance, time, or travel costs. Recently, the green vehicle routing problem (GVRP) gained much attention, because it aims to reduce the environmental impact of the engaged vehicles. The main goal is to minimize greenhouse gasses emissions (GHG) produced by a fleet of vehicles. Both internal combustion vehicles (ICV) and alternative fuel vehicles (AFV) are considered, dividing GVRP into two separate subclasses: ICV-based GVRP and AFV-based GVRP. In the ICV-based subclass, the environmental aspect comes from the objective function which aims to minimize GHG emissions or fuel usage of ICVs. This is usually connected to the minimization of travel time, instead of the distance. Busy city streets are avoided and replaced by the fast autoroutes whenever is possible. On the other hand, the environmental aspect of AFV-based GVRP is implicit and comes from avoiding fossil fuels in transport. Since GVRP is NP-hard, finding the exact solution in a reasonable amount of time is often impossible for larger instances, which is why metaheuristic approaches are predominantly used. In the field of optimization, metaheuristics are high-level methods that guide some underlying heuristic, in order to improve its performance. The focus of this talk will be to introduce the problem, present some of the most common GVRP attributes, and review the existing literature applying metaheuristic approaches to this problem. Finally, we are going to discuss potential directions for future research.
Zajednički sastanak Studentskog seminara i Seminara za računarstvo i primenjenu matematiku.

PETAK, 26.11.2021. u 12:00, Live stream
Petar Ćirković, Matematički institut SANU i Prirodno-matematički fakultet u Nišu
BIFURKACIONA ANALIZA SIR EPIDEMIOLOŠKOG MODELA SA MEDICINSKIM TRETMANOM
Tema ovog rada je bifurkaciona analiza nelinearnog matematičkog modela širenja zaraznih bolesti pod uslovom da postoji konstantni medicinski tretman obolelih osoba. Biće postavljen SIR epidemiološki model i istražena dinamika tog modela, sa ciljem da se objasni kako medicinski resursi, kao što su lekovi, vakcinacija, broj bolničkih kreveta, izolacija, utiču na širenje zaraznih bolesti. Biće određen reprodukcioni broj dinamičkog modela, ispitana egzistencija položaja ravnoteže, kao i njihova lokalna i globalna stabinost. Bifurkaciona analiza matematičkog modela pokazaće da u dinamičkom sistemu može nastati više različite tipove bifurkacija: sedlo-čvor bifurkacija, podkritična i nadkritična bifurkacija, nadkritična Hopf bifurkacija i Bogdanov-Takens bifurkacija koju karatkeriše nastajanje homociklične trajektorije. Da bi se potvrdili analitički rezultati biće primenjena numerička simulacija modela, koristeći softverski paket Wolram Mathematica.

Predavanja su namenjena širokom krugu slušalaca. Održavaju se petkom sa početkom u 12:00 sati u sali 301f na trećem spratu zgrade Matematičkog instituta SANU, Knez Mihailova 36.

Đorđe Baralić
Rukovodilac seminara
Luka Milićević
Sekretar seminara