ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζωῶν τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

MATHEMATICAL ANALYSIS WITH APPLICATIONS Seminar

 

PROGRAM


Plan rada Seminar iz matematičke analize sa primenama za NOVEMBAR 2024.



Registracija za učešće na seminaru je dostupna na sledećem linku:
https://miteam.mi.sanu.ac.rs/asset/LKGS835QQhi4x5uGw
Ukoliko ste već registrovani, predavanja možete pratiti na sledećem linku (nakon sto se ulogujete):
https://miteam.mi.sanu.ac.rs/asset/5dTX9wSbARfwfpNY5
Neulogovani korisnici mogu pratiti prenos predavanja na ovom linku (ali ne mogu postavljati pitanja osim putem chata i ne ulaze u evidenciju prisustva):
https://miteam.mi.sanu.ac.rs/call/dpesCPawfHWm6LN3L/4omy3gZWp8F_Q4RjQSiJO9g-PWGPlbZs_TYO3M6m00K



Četvrtak, 07.11.2024. u 16:00, Online
Serap Öztop Kaptanoğlu, Istanbul University
A NOTE ON ORLICZ AMALGAM SPACES
Let Φ1, Φ2 be Young functions and ω be a moderate weight function on ℝn. We introduce the weighted Orlicz amalgam spaces W(LΦ1(ℝn), LωΦ2(ℝn)) defined on ℝn, where the local component space is the Orliczspace LΦ1(ℝn) and the global component is the weighted Orlicz space LωΦ2(ℝn). We derive some properties of the spaces W(LΦ1(ℝn), LωΦ2(ℝn)) such as translation invariance, density and duality. We obtain an equivalent discrete-type norm on W(LΦ1(ℝn), LωΦ2(ℝn)). We are interested in inclusion relations between the Orlicz amalgam spaces W(LΦ1(ℝn), LωΦ2(ℝn)) with respect to Young functions and weights. Among other things, we show that inclusion relations among the local components imply inclusion relations for the amalgams.
This talk is based on joint work with Büşra Arıs.

Vladimir Božin
Rukovodilac seminara
Bogdan Đorđević
Sekretar seminara